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Cosmologists, over the years, have dedicated much time and effort to determining
the matter density of the universe. There are many reasons for this obsession.
First, the density parameter in matter, £2,, 0, is important in determining the spatial
curvature and expansion rate of the universe. Even if the cosmological constant
is nonzero, the matter content of the universe is not negligible today, and was
the dominant component in the fairly recent past. Another reason for wanting to
know the matter density of the universe is to find out what the universe is made of.
What fraction of the density is made of stars, and other familiar types of baryonic
matter? What fraction of the density is made of dark matter? What constitutes the
dark matter — cold stellar remnants, black holes, exotic elementary particles, or
some other substance too dim for us to see? These questions, and others, have
driven astronomers to take a census of the universe, to find out what types of
matter it contains, and in what quantities.

12

We have already seen in the previous chapter one method of putting limits M 20,
on Q0. The apparent magnitude (or flux) of type Ia supernovae as a function -+ SN Aeta edc .

of redshift is consistent with a flat universe having Qo ~ 03 and Q49 ~ 0.7;
However, neither €, nor £, ¢ is individually well-constrained by the s@"’é‘rﬁ'&%
observations. The supernova data are consistent with Q2,0 = 0 if Q A0 ~ 0.3;
they are also consistent with 2,0 = 0.45 if Q4 ~ 0.9. In order to determine
2,n,0 more accurately, we will have to adopt alternate methods of estimating the

matter content of the universe.

7.1 Visible Matter

Some types of matter, such as stars, help astronomers to detect them by broad-

and ultraviolet range of the electromagnetic spectrum. Suppose, for instance, you
install a V-band filter on your telescope. Such a filter allows photons in the
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wavelength range 500nm < A < 590nm to pass through. The “V” in V-band
stands for “visual”; although your eyes can detect the broader wavelength range
400nm < A < 700 nm, a V-band filter lets through the green and yellow wave-
lengths of light to which your retina is most sensitive. About 12 percent of the
Sun’s luminosity can pass through a V-band filter; thus, the Sun’s luminosity in
the V band is Loy & 0.12Lg ~ 4.6 x 10% watts.'

Surveys of galaxies reveal that in the local universe (outto d ~ 0.1c/Hp), the
luminosity density in the V band is

o =Nl = vy =11 x 108Lg y Mpc™>. (7.1)

To convert a luminosity density into a mass density o, of stars, we need to know
the mass-to-light ratio of the stars. If all stars were identical to the Sun, we
could simply say that there is one solar mass of stars for each solar luminosity
of output power, or (M/Ly) = IMQ / Le.v; this corresponds to about 43 metric

| | tons for every watt of yellow-green light. However, stars are not uniform in their

| properties.

Consider, for instance, the stars that astronomers refer to as “main sequence”
stars; these are stars that are powered, like the Sun, by hydrogen fusion in their
cores. The surface temperature and luminosity of a main sequence star are deter-
mined by its mass, with the most massive stars being the hottest and brightest.
Astronomers find it useful to encode the surface temperature of a star as a letter,
called the spectral type of the star. For historical reasons, these spectral types
are not in alphabetical order: from hottest to coolest, they are O, B, A, F, G,
K, and M. (Although the sequence of spectral types looks like an exploswn
in an alphabet soup factory, it does provide us with a useful shorthand: hot,

* luminous, massive main sequence stars can be called “O stars” for short, while

cool, dim, low-mass main sequence stars are “M stars.”) An O star with mass
M = 60 M, has a V-band luminosity Ly ~ 20000 Ly, and thus a mass-to-light
ratio M/Ly ~ 0.003 Mg/ Lo y. By contrast, an M star with mass M = 0.1 Mg

“has Ly ~ 5 x 107 Ly, and thus a mass-to-light ratio M /Ly ~ 2000Mg/ Lo,y

The mass-to-light ratio of the stars in a galaxy will therefore depend on the

mix of stars that it contains. The physical processes that form stars are found

empirically to favor low-mass stars over high-mass stars. In a star-forming region,
the initial mass function x (M) is defined so that x (M)dM is the number of stars
created with masses in the range M — M +dM. At masses M > 1 M, the initial
mass function is well fitted by a power law,

| X0 M ? M > 1Ml e, \ff (7.2)

1 Although old-fashioned incandescent light bulbs are castigated for their inefficiency at producing visible
light, the Sun isn’t hyper-efficient at producing visible light either. (Or rather, to get the causality right, our
eyes haven’t evolved to be hyper-efficient at detecting sunlight.) About 10% of the Sun’s luminosity is in the

ultraviolet range and 50% is in the infrared, leaving only 40% in the wavelength range A = 400 — 700 nm.
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Figure 7.1 An initial mass function for stars and brown dwarfs. Mass ranges correspond-

ing to the standard stellar spectral types O through M are indicated, as well as the low-

mass realm of brown dwarfs. The values 8 = 2.3, M, = 0.2 Mg and o = 0.5 are assumed

in the Chabrlel mass function of Equauons 7.2 and 7.3. / ’ / e Vo oy )
{ .

" ~ , { P
Prve bar AF)t M fr s Me (G223 30 200045 /(7
The power-law index § varies from location to location, but a value g = 2.3
is typical. At lower masses, the shape of the initial mass function is less well
determined, but a log-normal distribution is found to give a reasonable fit:
;.{/.;v vorwmal | o X (M) £l exp (— (log M — log M.)”
U - M 20°

v/

) [M < 1Mg]. (7.3)

The characteristic mass M, and the width ¢ of the distribution vary from location
to location. However, typical values, when masses are measured in units of the
solar mass, are M, ~ 0.2 and 0 ~ 0.5 A e

The initial mass function found by combmmg Equations 7.2 and 7.3 is plotted
in Figure 7.1.2 Gaseous spheres less massive than M = 0.08 M, are actually
brown dwarfs rather than stars. The difference between a brown dwarf and a star
s that a brown dwarf is too low in mass for hydrogen fusion to be ignited at
its center. Since brown dwarfs are not powered by nuclear fusion, they tend to
be even cooler and dimmer than M stars. The initial mass function for stars and
brown dwarfs is highest in the mass range 0.02Mg — 0.2Mgy; O stars, with
M > 18 My, are far out on the power-law tail of the initial mass function. At
The time of formation, there will be about 250 low-mass M stars for every O star.

A L . o . A
“ /Y im0l 20 Ix g,’ﬁ/”\ o L 5D TN

;t ? - 4 : )
2 An initial mass function that takes the form of a log-normal distribution with a power-law tail to high masses
is called a Chabrier function, after the astronomer Gilles Chabrier.
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Although the total mass of 250 M stars is comparable to that of a single O star,
their total V-band luminos"i’t_gfﬂis negligible compared to the O star’s luminosity.
In galaxies actively forming stars today, the mass-to-light ratio of the stellar
population is found to be as small as M /Ly ~ 0.3 Mg/ Lg v.

Although O stars are extremely luminous, they are also short-lived. An O star
with a mass M = 60 My will run out of fuel for fusion in a time ¢t ~ 3 MS/r; it will
then explode as a type Il supernova. Thus, a galaxy that is quiescent (that is, one
that has long since étopped forming new stars) will lack O stars. The mass-to-light
ratio of quiescent galaxies can rise to as large as M /Ly ~ 8 M/ Lo v. In the local
universe, there is a mix of star-forming and quiescent galaxies, so we can’t go too
badly wrong if we take an averaged mass-to-light ratio of} (M/Ly) ~ 4 Mg/ Lg, v l

With this value, we find that the mass densuy of stars in the universe today is
t e, Lx o

P

Since the current critical density of the universe, expressed as a mass density, is
peo, = 1.28 x 10" My Mpc ™3 the current density parameter of stars is

) 4 x 108 Mg Mpc™? e ity
Qo= 20 5 X 1T MoMBC " 4 0034 02 £015)
S P T 128 x 101 Mg Mpc ™ Al l/

By thls accountmg, stars make up. just 0.3% of the density needed to ﬂatten the
universe. The density parameter in stars is boosted slightly if you broaden the

‘. ocategory of stars to include stellar remnants such as white dwarfs, neutron stars,

and black holes, as well as substellar objects such as brown dwarfs. However,

"even when you add ex-stars and not-quite-stars to the total, you still find a density
‘iparameter €2, < 0.005.

Galaxies also contain baryonic matter that is not in the form of stars, stellar
remnants, or brown dwarfs. In our galaxy and in M31, for instance, the mass of
interstellar gas is about 20 percent of the mass in stars. In irregular galaxies such
as the Magellanic Clouds, the ratio of gas to stars is even higher. In addition,

“ there is a significant amount of gas between galaxies. Consider a rich cluster of
i, galaxies such as the Coma cluster, located about 100 Mpc from our galaxy, in the

direction of the constellation Coma Berenices. At visible wavelengths, as shown
in Figure 7.2, most of the light comes from the stars within the cluster’s galaxies.

The two brightest galaxies in the Coma cluster, NGC 4889 (on the left in Figure
- 7.2) and NGC 4874 (on the right), each have a luminosity Ly ~ 2.5 x 101" L .2

~The Coma cluster contains thousands of galaxies, most of them far less luminous
" than NGC 4889 and NGC 4874; their summed luminosity in the V band comes

110 Leomay & 5 x 102 Lgy. If the mass-to-light ratio of the stars in the Coma

3 The bright star (with diffraction spikes) just above NGC 4874 in Figure 7.2 is HD 112887, a main sequence
F star at a distance d ~ 77 pc, less than a millionth the distance to the Coma cluster. Ahnost every other light
source in Figure 7.2 is a galaxy within the Coma cluster.



Figure 7.2 The Coma cluster as seen in visible light. The region shown is 36 arcminutes
by 24 arcminutes, equivalent to 1.1 Mpc by 0.7 Mpc at the distance of the Coma cluster.

[Sloan Digital Sky Survey]

Figure 7.3 The Coma cluster as seen in X-ray light. The location, orientation, and scale
are the same as in the visible light image of Figure 7.2. [NASA SkyView: data from
ROSAT orbiting X-ray observatory]

cluster is (M/Ly) =~ 4 M/ Lg .y, then the total mass of stars in the Coma cluster
i Mcomas ~ 2 % 10'3 M. Although 20 trillion solar masses represents a lot
of stars, the stellar mass in the Coma cluster is small compared to the mass of
the hot, intracluster gas between the galaxies in the cluster. X-ray images, such
as the one shown in Figure 7.3, reveal that hot, low-density gds, with a typical
temperature of T ~ 108 K, fills the space between clusters, emitting X-rays with

o el o~ _ e ¥ PR
Hlbizg;) (’/'-.jmpuﬂé v -1?: Wlp"f’?’ = L(I—a widh, T 10 K o~ v-fe“"\/\
T Y X=X PPN Ate f’UM ov{ P v ow 0\c/t 7/1 & -f’fdﬂof /t-‘u L(\A,,/S)



128

Dark Matter

E i f) R, AAA L

I f
the Coma cluster is estimated to be Mcoma gas 2 X 1014 M@, roughly ten times ! /

the mass in stars.

Not all the baryonic matter in the universe is easy to detect. About 85%
of the baryons in the universe are in the extremely tenuous gas of ilﬁ-e?@aéﬁé
space, outside galaxies and clusters of galaxies. Much of this intergalactic gas
is too low in density to be readily detected with current technology. The best
limits on the baryon density of the universe actually come from observations
of the cosmic microwave background and from the predictions of primordial
nucleosynthesis in the early universe. The cosmic microwave background has
temperature fluctuations whose properties depend on the baryon-to-photon ratio

./ when the universe was a quarter of a million years old. In addition, the efficiency

with which nucleosynthesis takes place in the early universe, converting hydrogen
into deuterium, helium, lithium, and other elements, depends on the baryon-
to-photon ratio when the universe was a few minutes old. Both these sources
of information about the early universe indicate that ‘the density parameter of

baryonic matter today must be {24
. s, SERAr . s -~
= = Y e Qg = 0.048 £0.00352 14—y o (7.6)
o

ten to twenty times the density parameter for stars. When you stare up at the night
sky and marvel at the glory of the stars, you are actually marveling at a minority
of the baryonic matter in the universe.

7.2 Dark Matter in Galaxies

The situation, in fact, is even more extreme than stated in the previous section.
Not only is most of the baryonic matter undetectable by our eyes, but most of
the matter is not even baryonic. The majority of the matter in the universe is
nonbaryonic dark matter, which doesn’t absorb, emit, or scatter light of any
wavelength. One way of detecting dark matter is to look for its gravitational
influence on visible matter. A classic method of detecting dark matter involves
looking at the orbital speeds of stars in spiral galaxies such as our own galaxy and
M31. Spiral galaxies contain flattened disks of stars; within the disk, stars are on
nearly circular orbits around the center of the galaxy. The Sun, for instance, is on
such an orbit - itis R = 8.2 kpc from the galactic center, and has an orbital speed
of v =235kms~!,

B Suppose that a star is on a circular orbit around the center of its galaxy. If
the radius of the orbit is R and the orbital speed is v, then the star experiences an
acceleration

i = Vg = AT (7.7)

P

I



directed toward the center of the galaxy. If the acceleration is provided by the / Z%

gravitational attraction of th? galaxy, then (' \/, VA =W st
) g “Lansiom) Y .- Vi )

- GU®) _yn Y Tt = AV Mo !

e M X a= R2 ,}‘, T = S({‘w“/'f _r-; (7.8) ) N

equal to Equation 7.8:

v GM(R)
E — R (7-9)
or
A 2\ | GM(R) | MeT wHhiT £ 0 Rservy Toll oU
Ueptns ~(R)! N e (T10) 1 g conin

The surface brightness / of the disk of a spiral galaxy typically falls off exponen-
tially with distance from the cgnter: o ~ ] e W -

— >

' I(R) = I(0) exp (_Rﬁ) , ];' (7.11)
with the scale length R, typically being a few kiloparsecé. For our galaxy, the scale
length measured in the V band is R, ~ 4 kpc; for M31, a somewhat larger disk
galaxy, R; ~ 6 kpc. Once you are a few scale lengths from the center of the spiral
galaxy, the mass of stars inside R becomes essentially constant. Thus, if stars con-
tributed all, or most, of the mass in a galaxy, the velocity would fall as v o< 1/+/R =
at large radii. This relation between orbital speed and orbital radius, v o 1/+/R,
1s referred to as “Keplerian rotation,” since it’s what Kepler found for orbits in the M 62222 | g M.
solar system, where 99.8 percent of the mass is contained within the Sun. S v
The first astronomer to detect the rotation of M31 was Vesto Slipher, in 1914, Mg ~320 Mg
two years after he measured the blueshift resulting from its motion toward our /| ) =105
own galaxy. However, given the difficulty of measuring the spectra at low surface N . %
brightness, the orbital speed v at R > 3R, = 18 kpc was not accurately measured ! les = tooe My
until more than half a century later. In 1970, Vera Rubin and Kent Ford looked
at emission lines from regions of hot ionized gas in M31, and were able to find
the orbital speed v(R) out to a radius R = 24 kpc = 4R;. Their results gave no
sign of a Keplerian decrease in the orbital speed. At R > 4R;, a small amount
of atomic hydrogen is still in the disk of M31, which can be detected by means
of its emission line at A = 21cm. From observations of the Doppler shift of
. this emission line, the orbital speed is found to be nearly constant at v(R) ~
/1{[/ / ~230kms~! out to R = 35kpc ~ 6R,. Since the orbital speed of the stars and

\ e

AN TR !

4 Equation 7.8 assumes that the mass distribution of the galaxy is spherically symmetric. This is not, strictly

"X* speaking, true (the stars in the disk obviously have a flattened distribution), but the flattening of the galaxy
provides only a small correction to the equation for the gravitational acceleration. "V geelee £ i der. 7V 2
- ~ {2 {T; o 3 —— R \ "L = - —7 [6‘ L T V .'; » i
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A/, where vgq) is the radial velocity of the galaxy as a whole, resulting from the expan-
. ] /{’_/\ A/ ) sion of the universe, and v(R) is the orbital speed at a distance R from the center
/) 5 of the disk. We can thus compute the orbital speed v(R) in terms of observable

Vot etn properties as

() WR) = vr(R) —vgal v (R) — vgal
Cosini /1 _p2ja2

The first astronomer to detect the rotation of M31 was Vesto Slipher, in 1914.
However, given the difficulty of measuring the spectra at low surface brightness,
the orbital speed v at R > 3R, = 18 kpc was not accurately measured until more
than half a century later. In 1970, Vera Rubin and Kent Ford looked at emission
lines from regions of hot ionized gas in M31, and were able to find the orbital
speed v(R) outto a rad1us R = 24 kpc = 4Rs Thelr results shown as the open

(8.13)

Beyond R = 4Rq, the visible | hght from M31 was too fa1nt for Rubin and Ford to
measire the redshift; as they wrote in their original paper, “extrapolation beyond
that distance is a matter of taste.” At R > 4Ry, a small amount of atomic hydrogen
is still in the disk of M31, which can be detected by means of its emission line
at A = 21 cm. By measuring the redshift of this emission line, M. Roberts and
R. Whitehurst found that the orbital speed stayed at a nearly constant value of
v(R) ~ 230kms~! out to R ~ 30kpc ~ 5Ry, as shown by the solid dots in
Figure 8.4. Since the orbital speed of the stars and gas at large radii (R > 3R;) is
greater than it would be if stars and gas were the only matter present, we deduce
the presence of a dark halo within which the visible stellar disk is embedded. The

300 ‘ 2

200
v(kms™Y)

100

0 1 \g’ 1 1 1 _ 1
0 5 10 15 20 25 30

R (kpc)

FIGURE 8.4 The orbital speed v as a function of radius in M31. The open circles show
the results of Rubin and Ford (1970, ApJ, 159, 379) at visible wavelengths; the solid dots
with error bars show the results of Roberts and Whitehurst (1975, Apl, 201, 327) at radio
wavelengths.




130 Dark Matter

gas at large radii (R > 3R;) is greater than it would be if stars and gas were
the only matter present, we deduce the presence of a dark halo within which the
visible stellar disk is embedded. The mass of the dark halo provides the necessary
gravitational “anchor” to keep the high-speed stars and gas from being flung out
1nto intergalactic space.

M31 is not a freak; most, if not all, spiral galaxies have comparable dark
halos. For instance, our own galaxy has an orbital speed that actually seems to be
roughly constant at R > 15kpc, instead of decreasing in a Keplerian fashion. If
we approximate the orbital speed v as being constant with radius, the mass of a

; ~ spiral galaxy, including both the luminous disk and the dark halo, can be found
Usina (7 “ )< from Equation 7.10:

= i
M o x\n Ma P V2R 11 4 ? R
=t e MR) = 2 =105 x 10" M ( ) . 7.12
Ly 2 o lg £ G " ©\235km s 8.2kpc (7.12)
. ! 1 . The values of v and R in the above equation are scaled to the Sun’s location
At T2 in our galaxy. Since our galaxy’s luminosity in the V band is estimated to be
\ L’Jr-’pi_( ) Lgav = 2.0 x 101°Lg y, this means that the mass-to-light ratio of our galaxy,
{n R<LK,,, . taken as a whole, is 58XV = 5.5% ;’L, . " K
G o T i
— 3 Wl
= .. v 1%1 1\
t1 A lf‘ b0 WX (M/Ly)ga ~ 64 My/ Lo,y ( . (7.13)
gt H ' 100kee )22 10 )

using v = 235 kms~! in Equation 7.12. The quantity Ry, 1S the 1ad1us of the
v / . dark halo surrounding the luminous disk of our galaxy. The exact value of Ry,
L of Gake EJ is poorly known. A rough estimate of the halo size can be made by looking at the

Re l’ 1/3—?; - velocities of the globular clusters and satellite galaxies (such as the Magellanic
92 Wpe |52 Clouds) that orbit our galaxy. For these hangers-on to remain gravitationally
o g 3,<" ) L5 bound to our galaxy, the halo must extend as far as Rhulo ~ ‘15 kpc, implying

(- |28 a total mass for our galaxy of Mgy ~ 9.6 x 10'" Mg, and a total mass-to-light
0 Wor | b ratio (M/Ly)ga ~ 48 Mg/ Lo y. This mass-to-light ratio is an order of magnitude

o greater than that of the stars in our galaxy, implying a dark halo much more
S 1Y massive than the stellar disk. Some astronomers have speculated that the dark

E halo is actually four times larger in radius, with Ry, ~ 300 kpc; this would mean
) W that our halo stretches nearly halfway to M31. With Ry, &~ 300kpc, the mass
DM L foc of our galaxy would be Mgy ~ 3.8 x 1012 My, and the total mass-to-light ratio

o would be (M/Ly)eq ~ 190Mg/ Lo y.
v t0s Koe Al »

1 ‘-; 1,{ }"C«’ .
< e 7.3 Dark Matter in Clusters
( "}The first astronomer to make a compelling case for the existence of large quanti-
& ties of dark matter was Fritz Zwicky, in the 1930s. In studying the Coma cluster of
ro 34(

galaxies (shown in Figure 7.2), he noted that the dispersion in the radial velocity



of the cluster’s galaxies was very large — around 1000 km s~!. The stars and gas
visible within the galaxies simply did not provide enough gravitational attraction
to hold the cluster together. In order to keep the galaxies in the Coma cluster from
flying off into the surrounding voids, Zwicky concluded, the cluster must contain
a large amount of “dunkle Materie,” or (translated into English) “dark matter.”>
To follow Zwicky’s reasoning at a more mathematical level, let us suppose
that a cluster of galaxies consists of N galaxies, each of which can be approx-
imated as a point mass, with a mass m; (i = 1,2,. .,N), a position )E!_’,-,and a
VGIOClty %;. Clusters of galaxies are grav1tat10na11y bound objects, not e-)zpandmg
with the Hubble flow. The motion of individual galaxies within the cluster is well
described by Newtonian physics; the acceleration of the ith galaxy is thus given

by the formula VECTE R 25

[}
]

S M)
a=2 (38)-7 GHCAL & szjlxj_%|3 (7.14)

V o g Jf! '/ J#L

Note that Equation 7.14 assumes that the cluster is an isolated system, with the
gravitational acceleration due to matter outside the cluster being negligibly small.

b ot 1%

The gravitational potential energy of the system of N galaxiesis W/~ TR &

. /) . G m;m; {‘ [ Wt Lo=0
SRR R 7o (MBS W= = 7 7.15
I .74/ — - a / 22“—}_{;' I3 {_‘)

74 A , i,j Not ewAiehe Corredt, wild Lo
A. Vieed oho e fhvidis ind J#i Q(e .:?C,_,_,\gf_,\_
This is the energy that would be required to pull the N galaxies away from each
other so that they would all be at infinite distance from each other. (The factor
of 1/2 in front of the double summation ensures that each pair of galaxies is
only counted once in computing the potential energy. ) The potential energy of the
cluster can also be written in the form
" GM? |

(16 ]= W=—a——, | (7.16)
/ ! rn I

Al >

7 -{r
{aa

| | y |

where M = ) m; is the total mass of all the galaxies in the cluster, o is a | (X
numerical factor of order unity that depends on the density profile of the cluster,
and ry, is the half-mass radius of the cluster — that is, the radius of a sphere centered
on the cluster’s center of mass and containing a mass M /2. For observed clusters
of galaxies, it is found that & ~ 0.45 gives a good fit to the potential energy.

The kmetzc energy associated with the relative motion of the galaxies in the
cluster is

I

1 AN " S b N <
=5 2 milul’= 7 L (7.17)

3 Although Zwicky’s work popularized the phrase “dark matter,” he was not the first to use it in an astronomical
context. For instance, in 1908, Henri Poincaré discussed the possible existence within our galaxy of “matiere
obscure” (rendered as “dark matter” in the standard English translation of Poincaré’s works).
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The kinetic energy K can also be written in the form

/”"—-—.’_—_1_ [
K = 51\4<v2), | (7.18)
where o
J\/tm-.ufc rlﬁf,f'/'{ e’wfll»r( 7 2 1 500
(N SVALDIAN -ﬁlrﬂ,"feﬁ e (-—’«f st - Z mlix | ( )

-’

is the mean square velocity (welghted by galaxy mass) of all the galaxies in the

- e o

cluster.

Itis also useful to define the moment of inertia of the cluster as |
At Guesinoa(

g~ 3 EAt K btten !
- el Prog . - V‘L 1o A
T e 2| 22 &\r= Y miEp e 720
v i = /i J \( ( ) i " '\4 LpR ML {c oty [} :It
i - - Z-m"\l \ l ‘_.,,..._.-'--—--*’ L,;,,u\,.im BT b r i Ac f(uwu

The moment of inertia I can be linked to the kinetic energy and the potential
energy if we start by taking the second time derivative of I:

=2 Zm(x, A A (7.21)
‘ 1 /p))} ?~W“V;J
Using Equation 7.17, we can rewrite this as a e 5

F=23 m %) +4K= ¢ LI K (722

To introduce the potential energy W into the above relation, we can use
Equat10n(7 14 to wrlte

Zm,(xl 2= GZ (xf __;’). (7.23)
/#l

However, we could equally well switch around the i and j subscripts to_ ﬁnd the

(‘L |Wl m\ J‘( /
(xz x]) 1[ ,{ e “(
ij(xl %) = GZmel TAREICS U (7.24)
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equally valid equation
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(’j}.'Z_ 3) +(9.2%) (it doesn’t matter whether we call the variable over whu,h we’re summing i or j

or k or “Fred”), we can combine Equationg 7.23)and 7. 24/to find wa Aovt) se
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Thus, the first term on the right-hand side of Equation 7.22 is simply 2W, and we , ‘53
may now write down the 51mple relation

( 22) =) IT=2w+aK. | (7.27)

X;

This relation is known as the vmal theorem. It was first derived in the nineteenth
century in the context of the klr_lgtaheory of gases, but as we have seen, it applies
perfectly well to a self-gravitating system of point masses.

The virial theorem is particularly useful when it is applied to a system in
steady state, with a constant moment of inertia. (This implies, among other
things, that the system is ‘neither expanding nor contracting, and that we are
using a coordinate system in which the center of mass of the cluster is at rest.) If

= constant, then the steady-state virial theorem is

3 {V
d] e = 0=W+2K, (7.28)
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Using Equations 7.16 and 7.18 in Equation 7.29, we find
| | La GM?

Smpdy = 28 7.30
[ 2 ( ) 2 n ( )
This means we can use the virial theorem to estimate the mass of a cluster of
galaxies, or any other self—grav1tatmg steady-state system: whent 0(/ U 7;/6{?'5%/1 Ao
.' ; \ T 2 ) S 5 AT E oo b vou - oibess W
i 1o ) e A XGH
[ el ‘ = { 1 (731)/1/( Aont o

O ONOG. (7~ 5
/] 5

Note the similarity between Equatlon 7.12, used to estimate the mass of a rotating
spiral galaxy, and Equation 7.31, used to estimate the mass of a cluster of galaxies.
In either case, we estimate the mass of a self-gravitating systém by multiplying
the square of a characteristic VClOClty by a characteristic radius, then dividing by
the gravitational constant G.

Applying the virial theorem to a real cluster of galaxies, such as the Coma
cluster, is complicated by the fact that we have only partial information about the
cluster, and thus do not know (v?) and r, exactly. For instance, we can find the
line-of-sight Velocuy of each galaxy from its redshift, but the velocity perpen-
dicular to the line of sight is unknown. From measurements of the redshifts of
hundreds of galaxies in the Coma cluster, the mean redshift of the cluster is found

to be
(@) = 0.0232, =Ly = 4y = b5 b0 (1.32)
Iwhich can be translated into a distance Wing 57
dooma = (¢/Ho)(z) = 102 Mpc. _(7.33)
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The Ve1001ty dispersion of the cluster along the line of sight is found to be) : :

0 = (v = ()2 = 880kms ™. 134)

Neovma -
If we assume that the Ve10c1ty dispersion is 1sotr0plc then the three-dimensional

mean square Veloc1ty (v?) will be equal to three times the one-dimensional mean
square velocity o2, yielding

(v*) = 3(880kms1)* = 2.32 x 102 m?s72, (7.35)

Estimating the half-mass radius r, of the Coma cluster is even more peril-ridden
than estimating the mean square velocity (v*). After all, we don’t know the distri-
bution of dark matter in the cluster beforehand; in fact, the total amount of dark
matter is what we’re trying to find out. However, if we assume that the mass-to-
light ratio is constant with radius, then the sphere containing half the mass of the
cluster will be the same as the sphere containing half the luminosity of the cluster.
If we further assume that the cluster is intrinsically spherical, then the observed

distribution of galaxies within the Coma cluster indicates a half-mass radius
& 7 4.,{?}' S e A A s
A~ 1.5Mpc ~ 4.6 x 102 m.—= " 2 —

[rse

After all these assumptlons and approximations, we may estimate the mass
of the Coma cluster to be T

=" (v? )!‘;, (2.32 x 10?2 m?s72)(4.6 x 102 m)
1% & Mcoma =

]J L2xto” g " aG (045)(667><10—11m3s—2kg—1)

T

J'I.[ \ J ), L

4

<0° | oo ~ 4 x 10%kg 7 2 x 105 M= ML [(7.37)

Thus about one percent of the mass of the Coma cluster consists of stars
(Mcomas ~ 2 % 1013 M), and about ten percent consists of hot intracluster
gas (Mcoma gas ~ 2 x 10™Mg). Combined with the luminosity of the Coma
cluster, Leoma,y & 5 x 10'?Lg y, the total mass of the Coma cluster implies a

mass-to-light ratio . M
X\ g

#.5,038)

<M/LV>Coma ~ 400 M(D/ LG),V, %
greater than the mass-to-light ratio of our galaxy.

The presence of a vast reservoir of dark matter in the Coma cluster is
confirmed by the fact that the hot, X-ray emitting intracluster gas, shown in Figure
7.3, 1s still in place; if there were no dark matter to anchor the gas gravitationally,
the hot gas would have expanded beyond the cluster on time scales much shorter
than the Hubble time. The temperature and density of the hot gas in the Coma

~cluster can be used to make yet another estimate of the cluster’s mass. If the hot

/
] ot ﬂntr He-%Antracluster gas is supported by its own pressure against gravitational infall, it

' must obey the equation of hydlostatlc equilibrium:
R 1
Of/w e — CH ’ “eas o \ dPy gas GM (r ):Ogds (r)
/ Aan = 6 : U982 -, S  ~ > | (7.39)
& . 5 ¥ L@ r |
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where Py, is the pressure of the gas, pgs 18 the density of the gas, and M is the

total mass inside a sphere of radius r, including gas, stars, dark matter, lost socks, N’fc;,d
and anything else. ¢
The pressure of the gas is given by the perfect gas law, N, 4 M
ANT . (2347 s N M
AN R = A, N Ny e B = T
s < el i " s Pg: as (A .. R wwviia \V4 \
A~ ) E s AT P = P B g V= TNK 2y L
d’r JI']/ D \K“E' 2
\ where Ty 1s the temperature of the gas, and w is the mean mass per gas particle.
\X/ The mass of the cluster, as a function of radius, is found by combining Equations
) . 739 and 7.40:
H(")“—ﬂﬁf . J_"Z\i_ | Y kTg_as(r)r dIn pgs  dln T gas
C Gpawny (P wj — M) = - - : (7.41)
AW LV & . G dlnr dlnr

E{_ p".( V' ~The above equation assumes that 1 is constant with radius, as we’d expect if the
Tﬁz}; chemical composition and ionization state of the gas are uniform throughout the
cluster.
The X-rays emitted from the hot intracluster gas are a combination of
bremsstrahlung emission (caused by the acceleration of free electrons by protons
and helium nuclei) and line emission from highly ionized iron and other heavy
elements. Starting from an X-ray spectrum, it is possible to fit models to the — (7w
emission and thus compute the temperature 7Tgos(r), density pgq(r), and chemical W = Q
composition of the gas. Using this technique, the mass of the Coma cluster is |0 |~ J<
estimated to be M ~ 1.3 x 101 M, within r ~ 4 Mpc of the cluster center. Given
the uncertainties; this is consistent with the mass estimate of the virial theorem.
Other clusters of galaxies besides the Coma cluster have had their masses
estimated, using the virial theorem applied to their galaxies or the equation of
hydrostatic equilibrium applied to their gas. Typical mass-to-light ratios for rich
clusters are similar to those of the Coma cluster. If the masses of all the clusters
of galaxies are added together, it is found that their density parameter is

=i

i ? . ( - 2 - I A2 ol
li chus,o ~ 0.2. ) _(-Z m(“ o /."}!u/ (7.42)

L

This provides a lower limit to the matter density of the universe, since any
smoothly distributed matter in the intercluster voids will not be included in this
number.

7.4 Gravitational Lensing

So far, I have outlined the classical methods for detecting dark matter via its
gravitational effects on luminous matter.® We can detect dark matter around spiral

6 The roots of these methods can be traced back as far as the year 1846, when Leverrier and Adams deduced
the existence of the dim planet Neptune by its effect on the orbit of Uranus.
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galaxies because it affects the motions of stars and interstellar gas. We can detect
dark matter in clusters of galaxies because it affects the motions of galaxies and
intracluster gas. However, as Einstein realized, dark matter will affect not only
the trajectory of matter, but also the trajectory of photons. Thus, dark matter can
bend and focus light, acting as a gravitational lens. The effects of dark matter
on photons have been used to search for dark matter within the halo of our own
galaxy, as well as in distant clusters of galaxies.

To see how gravitational lensing can be used to detect dark matter, start by
considering the dark halo surrounding our galaxy. If there were a population of
cold white dwarfs, black holes, brown dwarfs, or similar dim compact objects
in the halo, they would be very difficult to detect from the light that they emit.
Thus, it was suggested that part of the dark matter in the halo could consist of
MACHGO:s, a slightly strained acronym for MAssive Compact Halo Objects. If
a photon passes such a compact massive object at an impact parameter b, as
shown in Figure 7.4, the local curvature of spacetlme will cause the photon to

B iloss st Abmt 9.9 A Ay s 4 el S
be deflected by an atwlc o Py b I JRI - e b coite]
5" ( f / (’3‘ . - P £:( > ; T
( / i *-"—'}/'r W% i ‘4GM U .4, W= / O f’ _(7 43 ) o
e . . 9 ;\, vl ‘\f’f\ 4 i 1 \ .._ . -, . a — X \- ’ s Loy o : L s )
(4 '/ . /../ o g e 9= L1 \ {-7
£ F2 c%b ‘ :

where M is the mass of the compact object. For instance, light from a distant star
that just grazes the Sun’s surface should be deflected through an angle

\ 9L !

2 (CM | BRFY 4GM |
. G5 B ( o d | = © — 1.7 arcsec. 7.44
/ U= - /1' II = P] - = c?Rg " ( :
;) o In 191 9 after Elnsteln predicted a deflection of this magnitude, an eclipse expe-
Wpldhe A dition photographed stars in the vicinity of the Sun. Comparison of the eclipse

Loucan [:If';. /photographq with photographs of the same star field taken six months earlier

AT _ revealed that the apparent positions of the stars were deflected by the amount that

i\ u'l t (} 47> ) Einstein had predicted. This result brought fame to Einstein and experimental
support to the theory of general relativity.

Since a massive object can deflect light, it can act as a lens. Suppose a

MACHO in the halo of our galaxy passes directly between an observer in our

“galaxy and a star in the Large Magellanic Cloud. Figure 7.5 shows such a

situation, with a MACHO halfway between the observer and the star. As the

x}; MACHO deflects the light from the distant star, it produces an image of the star
to—. _ thatis both distorted and amplified. If the MACHO is exactly along the line of
sight between the observer and the lensed star, the image produced is a perfect £wsioiy
ring, with angular radius
@ 6)(4 DAL ol " > — T W 1Aaece, f.;"."!-_—,(_‘ ;
% Qlohon wovey Lemqdl Cfsee oo Ao Vylat iy D ? y
L Z /‘“1 / . I . . = . . (, Ty
=N\ X { Fiognive 7 4 Deflectionn of Tiaht o a 1maccitrm amammano ot ~dnd ot
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d O M N\ v =i
r=2"F ~90d: et 7.4
A= __)?d"yg(lMQ) (2001<ms—1) (7.47)

where v is the relative transverse velocity of the MACHO and the lensed star
as seen by the observer on Earth. Generally speaking, more massive MACHOs
produce larger Einstein rings and thus will amplify the lensed star for a longer
time.

The research groups that searched for MACHOs found a scarcity of short
duration lensing events, suggesting that there is no significant populatlon of brown
dwarfs or freefloating planets (with M < 0.08 MG) in the dark halo of our galaxy.
The total number of lensing events they found suggests that at most 8 percent of
the halo mass could be in the form of MACHOs. The general conclusion is that
most of the matter in the dark halo of our galaxy is due to a smooth distribution
of nonbaryonic dark matter, instead of being congealed into MACHOs of roughly
stellar or planetary mass.

Gravitational lensing occurs at all mass scales. Suppose, for instance, that
a cluster of galaxies, with M ~ 10 Mg, at a distance ~ 500 Mpc from our
galaxy, lenses a background galaxy at dx ?;1000 Mpc. The Einstein mﬂ\uq for this

configuration will be A A (&&‘3}! =0 2) {7{;'1 ( & =0, |L1)

oo A 20" I, 12 d -1/2

, 11/‘ A t L f‘ 9 ~ 05( .Cm. e e T . 7.48

€ oy U, HRTRE ‘“( omme) (lOOOMpC) (7.48)

i { v II
The arc- shaped images into which the background galaxy is distorted by the
lensing cluster can thus be resolved. For instance, Figure 7.6 shows a Hubble

I 4

Figure 7.6 The central regions of the rich cluster Abell 2218, displaying gravitationally
lensed arcs. The region shown is 3.2 arcminutes by 16 arcminutes, equivalent to
0.68 Mpc by 0_ 34 Mpc at the distance of Abell 2218. [NASA, ESA, and Johan Richard
(Caltech)]
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Figure 7.5 Light from a star in the Large Magellanic Cloud is deflected by a MACHO
on its way to an observer in the disk of our galaxy (seen edge-on in this figure).

1 F o) e
o A—@.5 =9

4GM1—x\'"* o
Op = : (7.45)

c2d  x
where M is the mass of the lensing MACHO, d is the distance from the observer
to the lensed star, and xd (where 0 < x < 1) is the distance from the observer to
the lensing MACHO. The angle O is known as the Einstein radius. If x ~ 0.5
(that is, if the MACHO is roughly halfway between the observer and the lensed

star), then "
27

O 2 ~-,,_4 Mo\ 12 d —-1/2
O ~ 4 x 107" arcsec ; (7.46)
1 Mg 50kpc

If the MACHO does not lie perfectly along the line of sight to the star, then
the image of the star will be distorted into two or more arcs instead of a single
unbroken ring. Although the Einstein radius for an LMC star being lensed by a
MACHO is too small to be resolved, it is possible, in some cases, to detect the
amplification of the flux from the star. For the amplification to be significant, the
angular distance between the MACHO and the lensed star, as seen from Earth,
must be comparable to, or smaller than, the Einstein radius. Given the small size
of the Einstein radius, the probability of any particular star in the LMC being
lensed at any moment is tiny. It has been calculated that if the dark halo of our
galaxy were entirely composed of MACHOs, then the probability of any given
star in the LMC being lensed at any given time would still only be P ~ 5 x 1077,

To detect lensing by MACHOs, various research groups took up the daunting
task of monitoring millions of stars in the Large Magellanic Cloud to watch
for changes in their flux. Since the MACHOSs in our dark halo and the stars
in the LMC are in constant relative motion, the typical signature of a “lens-
ing event” is a star that becomes brighter as the angular distance between star
and MACHO decreases, then becomes dimmer as the angular distance increases
again. The typical time scale for a lensing event is the time it takes a MACHO to

A <

VviAa”

travel through an angular distance equal to 65 as seen from Earth; f01 a MACHO /v
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al of sured which are independent of their redshifts, enabling direct estimates of
rs of Hubble’s constant to be made (see Sect. 8.3). )
0~ ‘T j\(,'- Al
vave | (W ol . .
- 4.3.4 Gravitational Lensing by Clusters of Galaxies ./{.ﬁ f
sters : o Jist g . K e om ’
pon 1 () et 2 A beautiful method for determining the mass distribution in clusters of galax-
. _ / ies has been provided by the discovery of gravitationally lensed arcs about
Fal 2 /« the central regions of rich clusters of galaxies. In his great paper of 1915 on
'lus-. ; the General Theory of Relativity, Einstein showed that the deflection of light
éas by the Sun amounts to precisely twice that predicted by a simple Newtonian
o to' calculation. According the General Relativity, the angular deflection of the
1 as position of a background star due to the bending of space-time by a point
ness mass M is ACM
= —F, 4.

o " (4.30)
where p is the ‘collision parameter’ (Fig. 4.8a). For the very small deflections
involved in the gravitational lens effect, p is almost exactly the distance of
closest approach of the light rays to the deflector.

- Chwolson (1924) and Einstein (1936) realised that, if the background
star were precisely aligned with the deflecting point object, the gravitational
deflection of the light rays would result in a circular ring, centred upon the
deflector (Fig. 4.8b). It is a straightforward calculation to work out the radius
of what came to be known as an ‘Einstein ring’, althoygh they should perhaps
be known as ‘Chwolson rings’. In Fig. 4.8b, tﬁe distance of the background
source is Dy and that of the deflector, or lens, Dy, the distance between them
being Dg4s. Suppose the observed angular radius of the Einstein ring is g as
illustrated in Fig. 4.8b. Then, by simple geometry, since all the angles are
small Dd _/ Ara e Lo oLl [ 1) \.r.‘:‘.o-&,--(.

Or = | =), S oon ) (431)

E ( D, ) s, (6,83 585 ¢ 1
ind / where « is the deflection given by (4.30). Therefore, | -
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ore l “J 3 Since p = O Dq,
- ) e 4GM ([ Dgs 4GM 1
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. \» /'KD where D = (DsDq4/Dgs). Thus, the Einstein angle 0g, the angle subtended

cal a by the Emstem rny the observer, is given by
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of aGM\'? 1 ;
ea- L}‘/ eE = < c2 ) D1/2 . (434)
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Fig. 4.8. (a) Illustrating the geometry of the deflection of light by a deflector, or
lens, of mass M. (b) Illustrating the formation of an Einstein ring when the source
and deflector are perfectly aligned. (c) Illustrating the changes of the appearance of
a compact background source as it passes behind a point mass. The dashed circles
correspond to the Einstein radius. When the lens and the background source are
precisely aligned, an Einstein ring is formed with radius equal to the Einstein radius
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Fig. 4.10. The gravitational distortions of a background source (Panel I) when it
is located at different positions with respect to the axis of the gravitational lens.
In this example, the lens is an ellipsoidal non-singular squeezed isothermal sphere.
The ten positions of the source with respect to the critical inner and outer caustics
are shown in the panel (S). The panels labelled (1) to (10) show the shapes of
the images of the lensed source (from J.-P. Kneib, Ph.D. Thesis (1993)). Note the
shapes of the images when the source crosses the critical caustics. Positions (6) and



Space Telescope image of the cluster Abell 2218, which has a redshift z = 0. 176,
and hence is at a proper distance d = 740 Mpc. The elongated, shghtly curved
arcs seen in Figure 7.6 are not oddly shaped galaxies within the cluster; instead,
they are background galaxies, at redshifts z > 0.176, which are gravitationally
lensed by the cluster mass. The mass of clusters can be estimated by the degree
to which they lens background galaxies. The masses calculated in this way are
in general agreement with the masses found by applying the virial theorem to
the motions of galaxies in the cluster or by applying the equation of hydrostatic
equilibrium to the hot intracluster gas.

/7 7 —QAmo = 0.262
(aplon d | = Oyo ool 6.8 Mo daph 2
+ Qs 7.5 What’s the Matter?

TOTAL. WJZ.\M,(? o 0.2 !0
We described how to detect dark matter by its gravitational effects, but have been

dodging the essential question: “What is it?” As you might expect, conjecture
about the nature of the nonbaryonic dark matter has run rampant (some might
even say it has run amok). A component of the universe that is totally invisible
is an open invitation to speculation. To give a taste of the variety of speculation,
some scientists have proposed that the dark matter might be made of axions, a
type of elementary particle with a rest energy of muc? ~ 1073 eV, equivalent to
Max ~ 2 x 10~ kg. This is a rather low mass — if would take some 50 billion
axions (if they indeed exist) to equal the mass of one electron. On the other hand,
some scientists have conjectured that the dark matter might be made of primordial
black holes, with masses up to mpy ~ 10° M, equivalent to mpy ~ 2 x 10* kg’
This is a rather high mass — it would take some 30 billion Earths to equal the
mass of one primordial black hole (if they indeed exist). It is a sign of the vast
ignorance concerning nonbaryonic dark matter that two candidates for the role of
dark matter differ in mass by 76 orders of magnitude.

One nonbaryonic particle that we know exists, and which has a nonzero mass,
is the neutrino. As stated in Section 5.1, there should exist today a cosmic back-
ground of neutrinos. Just as the cosmic microwave background is a relic of the
time when the universe was opaque to photons, the cosmic neutrino background
is a relic of the time when the universe was hot and dense enough to be opaque
to neutrinos. The number density of each of the three flavors of neutrinos (ve, vu,

and vr) has been calculated to be 3/11 times the number den31ty of CMB photons A

yielding a total number density of neutrmoa S 7 5/ L = (T3

o) s 3 9
(616 =2 n, =3 Py = (4. 108 % 108 m) = 336 % 108 . (7.49)
(Y1 /s 11 11
This means that at any instant, about twenty million cosmic neutrinos are zip-

ping through your body, “like photons through a pane of glass.” In order to

7A primordial black hole is one that formed very early in the history of the universe, rather than by the collapse
of a massive star later on.
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Given a density parameter in nonbaryonic da1k matter of Qamo =~ 0.262, tlns p
Q-‘!} e "f:(s e‘f_—-‘*f/'}’

[ & 5 |
implies that an average neutrino mass of - /

1890 MeV /‘i" 5 0.262(4870 MeV m~?) N Lm0 e

226y (;g“, '.rwj' nyc = 3.36 x 108 m“3 ~ 3 8 t’V (7.51)
would be necessary to provide all the nonbaryonic dark’ matter in the universe.
Studies of neutrino oscillations and of the large scale structure of the universe
(see Equations 2.25 and 2.26) indicate that the aver age neutrmo mass actually
lies in the range "‘? 2512 /l" 2Y/3 [/? /*ar”f%v- :

\/ .

Vi€ H" ¢S (¢
0.019eV < myc* < 0.1eV. g i (7 52)
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This implies that the current density parameter in massive neutrinos lies in the
range

[aoiue 0 354032/ 0.0013 < Q,9 < 0.007, (7.53)

and that less than 3 percent of the dark matter takes the form of neutrinos.

Given the insufficient mass density of neutrinos, particle physicists have
provided several possible alternative candidates for the role of dark matter.
For instance, consider the extension of the Standard Model of particle physics
known as supersymmetry. Various supersymmetric models predict the existence
of massive nonbaryomc particles such as photinos, grav1t1nos axinos, sneutrinos,
glumos, and so forth. Like neutrinos, the l}ypothetlcal supersymmetric particles
interact with other particles only through gravity and through the weak nuclear
force, which makes them intrinsically difficult to detect. Particles that interact
via the weak nuclear force, but which are much more massive than the upper
limit on the neutrino mass, are known generically as Weaklv Interacting Massive
Particles, or WIMPs.® Since WIMPs, like neutrinos, do interact with atomic
nuclei on occasion, experimenters have set up WIMP detectors to discover
cosmic WIMPs. So far (to repeat a statement made in the first edition of this
book), no convincing detections have been made — but the search goes on.

Exercises

7.1 Suppose it were suggested that black holes of mass 1078 My made up all
the dark matter in the halo of our galaxy. How far away would you expect
the nearest such black hole to be? How frequently would you expect such a
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