Measuring Cosmological

Parameters

Cosmologists would like to know the scale factor a(¢) for the universe. For a
model universe whose contents are known with precision, the scale factor can
be computed from the Friedmann equation. Finding a(f) for the real universe,
however, is much more difficult. The scale factor is not directly observable; it can
only be deduced indirectly from the imperfect and incomplete observations that
we make of the universe around us.

In the previous chapter, I pointed out that if we knew the energy density & for
each component of the universe, we could use the Friedmann equation to find the
scale factor a(f). The argument works in the other direction, as well; if we could
determine a(f) from observations, we could use that knowledge to find e for each
component. Let’s see, then, what constraints we can put on the scale factor by
making observations of distant astronomical objects.

6.1 “A Search for Two Numbers”

Since determining the exact functional form of a(r) is difficult, it is useful, instead,
to do a Taylor series expansion for a(f) around the present moment. The complete
Taylor series is
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To exactly reproduce an arbitrary function a(r) for all values of ¢, an infinite
number of terms is required in the expansion. However, the usefulness of a Tay-
lor series expansion resides in the fact that if a doesn’t fluctuate wildly with
t, using only the first few terms of the expansion gives a good approximation
in the immediate vicinity of #,. The scale factor a(f) is a good candidate for a
Taylor expansion. The different model universes examined in the preyious two



chapters all had smoothly varying scale factors, and there’s no evidence that the
real universe has a wildly oscillating scale factor.

Keeping the first three terms of the Taylor expansion, the scale factor in the
recent past and the near future can be approximated as
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Using the normalization a(f) = 1, this expansion for the scale factor is custom-
arily written in the form

1
a(t) ~ 1+ Hy(t — ty) — —qOHZ(t — 15)2. (6.4)
In Equation 6.4, the parameter Hj is our old acquaintance the Hubble constant,
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and the parameter gy is a dimensionless number called the deceleratlon pa)crm-
eter, defined as o

; (6.5)
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Note the choice of sign in defining gg. A positive value of go corresponds toa <0,
meaning that the universe’s expansion is decelerating (that is, the relative velouty

of any two points is decreasing). A negatlve value of go corresponds to @ > 0, A

meaning that the relative velocity of any two pomts is increasing with time. The
choice of sign for g, and the fact that it’s named the deceleration parameter, is
because it was first defined during the mid-1950s, when the limited information
available favored a matter-dominated universe with @ < 0. If the universe contains
a sufficiently large cosmological constant, however, the deceleration parameter gq
can have either sign.

The Taylor expansion of Equation 6.4 is phys1cs free It is simply a mathe-
matical description of how the universe expdnds at times ¢ ~ t, and says nothing
at all about what forces act to accelerate the expansion (to take a Newtonian
viewpoint of the physics involved). In a famous 1970 review article, the observa-
tional cosmologist Allan Sandage described all of cosmology as ““a search for two
numbers.” Those two numbers were Hy and gg. Although the scope of cosmology
has widened considerably since Sandage wrote his article, it is still possible to
describe the recent expansion of the universe in terms of Hy and go.
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104 Measuring Cosmological Parameters

Although Hy and gy are themselves free of the theoretical assumptions
underlying the Friedmann and acceleration equations, we can use the acceleration
equation to predict what go will be in a given model universe. If our model
universe contains N components, each with a different value of the equation-of-
state parameter w;, the acceleration eqmtlon can be \Britten
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Divide each side of the acceleration equation by the square of the Hubble param-
eter H(¢) and change sign:
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The quantity in square brackets in Equation 6.8 is the inverse of the critical energy
density &.. Thus, we can rewrite the acceleration equation in the form

(’wl?
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Evaluating Equation 6.9 at the present moment, ¢ = 1, tells us the relation
between the deceleration parameter gy and the density parameters of the different
components of the universe:
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For a universe containing 1ad1a110n matter, ancl a cosmologlcal constant,

4 hos ot =S g, <052
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Such a universe will currently be accelerating outward (go < 0) if Q50 > 2,0+
Qn0/2. The Benchmark Model, for instance, has go &~ —0.53. /_ 0.5¢ /

In principle, determining Hy should be easy. For small redshifts, the relation
between a galaxy’s distance d and its redshift z is linear Equation (2.8):

VvV = cz = Hyd. (6.12)

Thus, if you measure the distance d and redshift z for a large sample of galaxies,
and fit a straight line to a plot of ¢z versus d, the slope of the plot gives you the
value of Hy.! In practice, the distance to a galaxy is not only difficult to measure,

1 The peculiar velocities of galaxies cause a significant amount of scatter in the plot, but by using a large
number of galaxies, you can beat down the statistical errors. If you use galaxies at d < 100 Mpc, you must
also make allowances for the local inhomogeneity and anisotropy. .
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but also somewhat difficult to define. In Section 3.5, the proper distance d (2
between two points was defined as the Iength of the spatial geodesic between
the points when the scale factor is fixed at the value a(r). The proper distance is
perhaps the most stralghtforward definition of the spatial distance between two
points in an expanding universe. Moreover, there is a helpful relation between
scale factor and proper distance. If we observe, at time f, light that was emit-
ted by a distant galaxy at time f,, the current proper distance to that galaxy is
(Equation 5.33):
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For the model universes examined in Chapter 5, we knew the exact functional
form of a(z), and hence could exactly compute d,(ty) for a galaxy of any redshift.
If we have only partial knowledge of the scale factor, in the form of the Taylor
expansion of Equation 6.4, we may use the expansion

S (Y=L o S mpe -+ (1+ L) B3 — 107 (6.14)
a(t) 2
in Equation 6.13. Including the two lowest-order terms in the lookback time, #, —
t., we find that the proper distance to the galaxy is S exp ,{ sy Cowmp
J

dy (to) = C(to — 1)+ ——(fo = Ie)“ 4. (6.15)
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The first term in the above equation, ¢(fy — #.), is what the proper distance would

be in a static universe — the lookback time times the speed of light. The second
term is a correction due to the expansion of the universe during the time the light
was traveling.

Equation 6.15 would be extremely useful if the photons from distant galaxies
carried a stamp telling us the lookback time, #y — .. They don’t; instead, they
carry a stamp telling us the scale factor a(z,) at the time the light was emitted.
The observed redshift z of a galaxy, remember, is
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Using Equation 6.14, we may WI'I'[C an dpproxm]ate relation between redshift and
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Inverting Equation 6.17 to give the lookback time as a function of redshift, we
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Substituting Equation 6.18 into Equation 6.15 gives us an approximate relation
for the current proper distance to a galaxy with redshift z:

c q0 cHy 7* ¢ 1+ qo df‘
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The linear Hubble relation d,  z thus holds true only in the limit z <« 2/(1+¢qo)& | |- 58’ G.2
If go > —1, then the proper distancé to a galaxy of moderate redshift (z ~ 0.1,

say) is less than would be predicted from the linear Hubble relation.

6.2 Luminosity Distance

Unfortunately, the current proper distance to a galaxy, d,(fo), is not a measurable
property. If you tried to measure the distance to a galaxy with a tape measure,
for instance, the distance would be continuously increasing as you extended the
tape. To measure the proper distance at time 7y, you would need a tape measure
that could be extended with infinite speed; alternatively, you would need to stop
the expansion of the universe at its current scale factor while you measured the
distance at your leisure. Neither of these alternatives is physically possible.

Since cosmology is ultimately based on observations, if we want to find
the distance to a galaxy, we need some way of computing a distance from that
galaxy’s observed properties. In devising ways of computing the distance to
galaxies, astronomers have found it useful to adopt and adapt the techniques
used to measure shorter distances. Let’s examine, then, the techniques used to
measure relatively short distances. Within the solar system, astronomers measure
the distance to planets by reflecting radar 31gnals from them. If §¢ is the time
taken for a photon to complete the round-trip, then the distance to the reflecting
body is d = ¢ 8t/2. (Since the relative speeds of objects within the solar system
are much smaller than c, the corrections due to relative motion during the time
8t are minuscule.) The accuracy with which distances have been determined with

_ this technique is impressive; the length of the astronomical unit, for instance, is
1 1AU = 149597 870.7 ky]}j The radar technique is useful only within the solar
“system. Beyond ~ 10 AU, the reflected radio waves are too faint to detect.

A favorite method for determining distances to other stars within our galaxy
is the method of trigonometric parallax. When a star is observed from two points
separated by a distance b, the star’s apparent position will shift by an angle 6.
If the baseline of observation is perpendicular to the line of sight to the star, the

parallax distance will be Jﬁ d_r[ £/Av
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Measuring the distances to stars using the Earth’s orbit (b = 2 AU) as a baseline
is a standard technique. Since the size of the Earth’s orbit is known with great
accuracy from radar measurements, the accuracy with which the parallax distance
can be determined is limited by the accuracy with which the parallax angle 6
can be measured. The Gaia satellite, launched by the European Space Agency in
2013, was designed to measure the parallax of stars with an error as small as ~ 10
microarcseconds. However, to measure 6 for a galaxy 100 Mpc away, an error of
< 0.01 microarcseconds would be required, using the Earth’s orbit as a baseline.
The trigonometric parallaxes of galaxies at cosmological distances are too small
to be measured with current technology.

Let’s focus on the properties that we can measure for objects at cosmological
distances. We can measure the flux of light, f, from the object, in units of watts
per square meter. The complete flux, integrated over all wavelengths of light,
is called the bolometric flux. The adjective “bolometric” is a reference to the
scientific instrument known as a bolometer, an extremely sensitive thermometer
capable of detecting electromagnetic radiation over a wide range of wavelengths.
The bolometer was invented around the year 1880 by the astronomer Samuel
Langley, who used it to measure solar radiation. As expressed more poetically in

“an anonymous limerick:

Oh, Langley devised the bolometer:
It’s really a kind of thermometer
Which measures the heat

From a polar bear’s feet

At a distance of half a kilometer.?

More prosaically, given the technical difficulties of measuring the true bolometric
flux, the flux over a limited range of wavelengths is measured. If the light from
the object has emission or absorption lines, we can measure the redshift, z. If
the object is an extended source rather than a point of light, we can measure its
angular diameter, §0.

One way of using measured properties to assign a distance is the standard
candle method. A standard candle is an object whose luminosity L is known.
For instance, if some class of astronomical object had luminosities that were the

F‘A.

same throughout all of spacetime, they would act as excellent standard candles —
if their unique luminosity L were known. If you know, by some means or other,
the Juminosity of an object, then you can use its measured flux f to compute a

function known as the luminosity distance, defined as

L_ 1/2
IW5Q Lhe: [,z g d'=(4if) | (6.21)

(2

2 The earliest version of this poem that I can find (in the May 1950 issue of Electronics) refers to the polar
bear’s seat, rather than its feet. I leave it to you to choose your favorite bit of the bear’s anatomy.
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The function d; is called a “distance” because its dimensionality is that of a dis-
tance, and because it is what the proper distance to the standard candle would be if
the universe were static and Euclidean. In a static Euclidean universe, propagation
of light follows the inverse square law: f = L/ (4w d?).

Suppose, though, that you are in a universe described by a Robertson—Walker

gk(f) metric Equation (3.41): mom Aodlamce
| 5”‘;‘\\"(6 45 = —C2df® + a(d)1dr + S.(2dR, 6.22)
| ©
p with

| / / Rysin(r/Ro) (k = +1)
/e S (T) S.(n=1r (k = 0) (6.23)
| Rosinh(r/Ry) (k = —1).

You ;rg\at the origin. At the present moment, ¢t = fy, you see light that was
emitted by a standard candle at comoving coordinate location (r, 6, ¢) at a time ¢,
(Figure 6.1). The photons emitted at time 7, are, at the present moment, spread
over a sphere of proper radius d,,(tp) = r and proper surface area A, (%). If space
is flat (¢ = 0), then the proper area of the sphere is given by the Euclidean relation
A,(to) = 4md,(tp)* = 47 r?. More generally, however,

Ap(to) = 4w S, (r)z- (6.24)

When space is positively curved, A, (1) i@r_r_ and the photons are spread over
a smaller area than they would beTrl_ﬁa_t space. When space is negatlvely curved,
A p(0) > 4Jrr and photons are spread over a larger area than they would be in
flat space.

In addition to these geometric effects, which apply even in a static universe,
the expansion of the universe causes the observed flux of light from a standard
candle of redshift z to be decreased by a factor of (1 + z) 2. First, the expansion
of the universe causes the energy of each ph(idh from the standard candle to
decrease. If a photon starts with an energy E, = hc/A, when the scale factor is

Figure 6.1 An observer at the origin observes a standard candle, of known luminosity L,
at comoving coordinate location (r, 8, ¢). “
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a(t.), by the time we observe it, when the scale factor is a(ty) = 1, the wavelength U(’{
will have grown to
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and the energy will have fallen to / = Hic
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L \L '

Second, thanks to the expansion of the universe, the time between photon detec-
tions will be greater. If two photons are emitted in the same direction separated
by a tlme ¢ interval 67,, the proper distance between them will initially be ¢(8t,); by
the time we detect the photons at time #y, the proper distance between them will
be stretched to ¢(62,) (1 + z) and we W111 detect them separated by a time interval
8o = 81e(1+7). S(Specal)Refah virtic ™ Vame Dhation )
“The net result is that in an expafding, spatially curved universe, the relation
between the observed flux f and the luminosity L of a distant light source is

-~

L
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and the luminosity distance is J\é;> T~ wwd L |
| dL = SN+ Z)\ (6.28)

& ,’ The available evidence indicates that our universe is nearly flat, with a radius
Lan y

= = of curvature Ry much larger than the current horizon distance dyo(f9). Objects

Su(pj ‘with finite redshift are at proper distances smaller than the horizon distance, and

'hence much smaller than the radius of curvature. Thus, it is safe to make the

_|approximation r < Ry, implying S, () ~ r. With our assumption that space

= K’[F L,/|is very close to being flat, the relation between the luminosity distance and the
‘current proper distance becomes very simple:

[' Y-0
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dL = a(l —|—z) = (to)(l —I—z) 1 [« = 0]. (6.29)

Thus, even if space is perfectly ﬂat, 1f you estimate the distance to a standard
candle by using a naive inverse square law, you will overestimate the actual proper
distance by a factor (1 + z), where z is the standard candle’s redshift.

Figure 6.2 shows the luminosity distance d; as a function of redshift for the
Benchmark Model and for two other flat universes, one dominated by matter and
one dominated by a cosmological constant. When z < 1, the current proper
distance may be approximated as

- — — | 1 |
| lig]Cra) = | aw=i(1-5%) -
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Figure 6.2 Luminosity distance of a standard candle with observed redshift z, in units of
the Hubble distance, ¢/Hp. The bold solid line gives the result for the Benchmark Model.
For comparison, the dot-dash line indicates a flat, lambda-only universe, and the dotted
line a flat, matter-only universe.

In a nearly flat universe, the luminosity distance may thus be approximated as

. C _T+qo '_C_ 1:'5]0 _d |
dp ~ HOZ (1 /\\ 3 Z) (1+2) HOZ<1 /—{- > Z) =<_1(6.31)
r} D/ {.d_,-_h.{ dL(zj Ap&o)‘df\ st .HO

6.3 Angular-diameter Distance “

The luminosity distance dy, is not the only distance measure that can be computed
using the observable properties of cosmological objects. Suppose that instead of
a standard candle, you observed a standard yardstick. A standard yardstick is an
object whose proper length £ is known. In many cases, it is convenient to choose
as your yardstick an object that is tightly bound together, by gravity or duct tape
or some other influence, and hence is not expanding along with the universe as a
whole.

Suppose a yardstick of constant proper length £ is aligned perpendicular to
your line of sight, as shown in Figure 6.3. You measure an angular distance 80
between the ends of the yardstick, and a redshift z for the light that the yardstick
emits. If 60 < 1, and if you know the length £ of the yardstick, you can compute
a distance to the yardstick using the small-angle formula .
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Figure 6.3 An observer at the origin observes a standard yardstick, of known proper
length £, at comoving coordinate distance r.
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This functlon of £ and 66 is called the angular-dzameter distance. The angular-

diameter distance is equal to the proper distance to the yardstick if the universe is
static and Euclidean.
In general, though, if the universe is expanding or curved, the angular-

diameter distance will not be equal to the current proper distance. Suppose

you are in a universe described by the Robertson—Walker metric given in

Equation 6.22. Choose your comoving coordinate system so that you are at

the origin. The yardstick is at a comoving coordinate distance r. At a time £,, the

yardstick emitted the light that you observe at time 7. The comoving coordinates

of the two ends of the yardstick, at the time the light was emitted, were (r, 8y, ¢) eod/ .‘,\,C )

and (r,0,, ¢). As the light from the yardstick moves toward the origin, it travels
T ,ff}\ along gecici(is_l_gs with !_”:___gggs_mnt and ¢ = constant. Thus, the angular size you Ar/O M? =0

measure for the yardstick will be 60 = 6, — 61 The distance ds between the two

ends of the yardstick, measured at the time z, when the light was emitted, can be

found from the Robertson—Walker metric: &'1 > Lds . Lp k=0

(333) ds=dv* .;,,kn..;{\o_"'—"; AD =
( 0% A5 502 0. 4@ | = ds = alt)S(Nse. 6.33)
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However, for a standard yardstick whose length £ is known, we can set ds = £,

and thus find that E‘“S} Cuwn L 29 )
Sx(r)t%‘,—d 39 (?/'( -_.i)
L =a(t,)S.(r)ob = T =— A G (6.34)
| +z

Thus, the angular-diameter distance dy to a standard yardstick is

e e 1

)1 gzt 50 _ A _ o ’ (6.35)
[ ™78 147 (1+2) 2

EL\AS J«O«:\ni -CWW(/( A\AC‘GQ( AP[LO X \A,,M i W



112

Measuring Cosmological Parameters

Comparison with Equation 6.28 shows that the relation between the angular-

diameter distance and the luminosity distance is

d.

AT +z>2

1

- .ll- -

(6.36)

Thus, if you observe a ledshlfted object that is both a standard candle and a
standard yardstick, the angular-diameter distance that you compute for the object
will be smaller than the luminosity distance. Moreover, if the universe is spatially

flat,
0 PPiscnse BoT H — -
Fﬂn + INV.EQ L -"I."""" \ ‘ da(l+2) = dp(to) = 1+z
i{o‘.:ﬁ MusT HA ~

[x = 0].

(6.37)

In a ﬂat universe, therefore, if you compute Lhe angulm diameter distance d, of
a standard yardstick, it isn’t equal to the current proper distance d,(ty); rather, it
is equal to the proper d1stance at the time the light from the object was emitted:

=d (t(])/(l -+ Z) = dp(fe)

 Figure 6.4 shows the ang,uldr-dlameter distance d4 for the Benchmark Model,
and for two other spatially flat universes, one dominated by matter and one dom-
inated by a cosmological constant. [Since dy is, for these ﬂﬁTuniverses, equal to
dy(te), Figui‘é 6.4 is simply a replotting of the right panel in Figure 5.9.] When
7 < 1, the approximate value of dy4 is given by the expansion
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Figure 6.4 Angular-diameter distance of a standard yardstick with observed redshift z, in
units of the Hubble distance, ¢/Hy. The bold solid line gives the result for the Benchmark
Model. For comparison, the dot-dash line indicates a flat, lambda-only universe, and the

dotted line a flat, matter-only universe.
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FL Thus, comparing Equations 6.30, 6.31, and 6.38, we find that in the limit z — 0,
o

Pdy *dp & dp(z‘o) A (c/Ho)z However, the state of affairs is very different

% -%,O in the limit z — o00. In models with a finite horizon size, d, (to) — dhor(ty)
as z — oo. The ]ummomty distance to highly redshifted objects, in this case,
diverges as z — o0, with

41(z = 00) ~ zdher(1) >0 fo 2300 J(639)
However, the angular-diameter distance to highly redshifted objects approaches
zero as z — 00, with
AL 2 f"fﬁr)) dpor (4 ) @
_ Z Vaor hor L+0 ’
— 1:(7 =G0
Ap = = o —> daz — 00) ¥ ZE =50 {200 J(6.40)

In model universes other than the lambda-only model, the angular-diameter dis-
tance d4 has a maximum for standard yardsticks at some critical redshift z.. For
instance, the Benchmark Model has a critical redshift z. = 1.6, where d4 (max) =
0. 405c/ Hy = 1770 Mpc If the universe were full of glow-in-the-dark yardsticks,
all of the same size £, their cll'l%l.lld[’ size 860 would decrease with redshift out to
Z = Z., but then would increase dﬁa&er redshifts. The sky would be full of big,
faint, redshifted yardsticks. A ! N
In principle, standard yardsticks, like standard candles, can be used to mea-
sure cosmological parameters such as Hy, €24 9, and €2, 0. In practice, the use of
standard yardsticks to determine cosmological parameters was long plagued with
observational difficulties. For instance, a standard yardstick must have an angular
size large enough to be resolved by your telescope. A yardstick of physical size
¢ will have its angular size 660 minimized when it is at the crltlcal redshlft Z¢. For
the Benchmark Model, | Kp¢ ot 2=1-2 & §9=0.2" or JO=1" (o Lafbkpe at 2-12.
(4 14 T (/ﬂ(( NeA Wuefmf LRL.
36 (min) = = ~ (0.]%arcsec (—) ‘ (6.41) .. L \,,>
dg(max) 1770 Mpc 1 kpe
Both galaxies and clusters of galaxies are large enough to be useful standard
candles. Unfortunately for cosmologists, galaxies and clusters of galaxies do
not have sharply defined edges, so assigning a particular angular size 86, and
a corresponding physical size ¢, to these objects is a somewhat tricky task.
Moreover, galaxies and clusters of galaxies are not isolated, rigid yardsticks of
fixed length. Galaxies tend to become larger with time as they undergo mergers
with their neighbors. Clusters, too, tend to become larger with time, as galaxies
fall into them. Correcting for these evolutionary trends is a difficult task. Given the
historical difficulties involved in using standard yardsticks to determine
cosmological parameters, let’s first look at how standard candles can be used
to determine H.
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6.4 Standard Candles and Hj

Using standard candles to determine the Hubble constant has a long and honor-
able history; it’s the method used by Hubble himself. The recipe for finding the
Hubble constant is a simple one:

o Identify a population of standard candles with lunﬁnosj_t}f i
o Measure the redshift z and flux f for each standard ce_mdléﬂm
« Compute dL - (L/4Arf) 1/2 for each standard candle.

Plot cz versus dL

Measure the slope of the cz versus dy, relation when z < 1; this gives H.

As with the apocryphal recipe for rabbit stew that begins “First catch your rabbit,”
the hardest step is the first one. A good standard candle is hard to find. For
cosmological purposes, a standard candle should be bright enough to be detected
at large redshifts. It should also have a luminosity that is well determined.>

One time-honored variety of standard candle is the class of Cephezd variable
stars. Cepheids, as they are known, are highly luminous superglant stars, with
mean luminosities in the range L= 400 — 40000 L. Cepheids are pulsationally
unstable. As they pulsate radially, their 1ummos1ty varies in response, partially
due to the changes in their surface area, and partially due to the changes in the
surface temperature as the star pulsates. The pulsational periods, as reflected in
the observed brightness variations of the star, lie in the range P = 1.5 — 60 days.

On the face of it, Cepheids don’t seem sufficiently standardized to be standard
candles; their mean luminosities range over two orders of magnitude. How can
you tell whether you are looking at an intrinsically faint Cepheid (L ~ 400 L)
or at an intrinsically bright Cepheid (L ~ 40000Lg) ten times farther away?
The key to calibrating Cepheids was discovered by Henrietta Leavitt, at Harvard
College Observatory. In the years prior to World War I, Leavitt was studying
variable stars in the Large and Small Magellanic Clouds, a pair of relatively
small satellite galaxies orbiting our own galaxy. For each Cepheid in the Small
Magellanic Cloud (SMC), she measured the period P by finding the time between
maxima in the observed brightness, and found the mean flux £, averaged over one
complete period. She noted that there was a clear relation between P and f, with
stars having the longest period of variability also having the largest flux. Since the
depth of the SMC, front to back, is small compared to its distance from us, she was
justified in assuming that the difference in mean flux for the Cepheids was due to
differences in their mean luminosity, not differences in their luminosity distance.
Leavitt had discovered a period—luminosity relation for Cepheid variable stars.

3 Auseful cautionary tale in this regard is the saga of Edwin Hubble. In the 1929 paper that first demonstrated
that df, o z when z < 1, Hubble underestimated the luminosity distances to galaxies by a factor of ~ 7
because he underestimated the luminosity of his standard candles by a factor of ~ 49.



If the same period-luminosity relation holds true for all Cepheids, in all galaxies, / / ?
then Cepheids can act as a standard candle.
Suppose, for instance, you find a Cepheid star in the Large Magellanic Cloud
(LMC) and another in M31. They both have a pulsational period of 10 days, so
you assume, from the period-luminosity relation, that they have the same mean
luminosity L. By careful measurement, you determine that -

fme _ 530 (6.42)
Jvsi
Thus, you conclude that the luminosity distance to M31 is greater than that to the
LMC by a factor
a3 (Fc)
LMD (e ) _ 335 2 154, (6.43)
dp (LMC) st -

(In practice, given the intrinsic scatter in the period—-luminosity relation, and the
inevitable error in measuring fluxes, astronomers don’t rely on a single Cepheid
in each galaxy. Rather, they measure f and P for as many Cepheids as possible
in each galaxy, then find the ratio of luminosity distances that makes the period—
luminosity relations for the two galaxies coincide.)

Note that if you only know the relative fluxes of the two Cepheids, and not
their luminosity L, you will only know the relative distances of M31 and the
_LMC. To fix an absolute distance to M31, to the LMC, and to other galaxies
containing Cepheids, you need to know the luminosity L for a Cepheid of a given
period P. If, for instance, you could measure the parallax distance d,, to a Cephe1d
within our own galaxy, you could then compute its luminosity L = 4 d? f and
use it to normalize the period—luminosity relation for Cepheids.* Unfor tunately,
Cepheids are rare stars; only the very nearest Cepheids in our galaxy have had dU‘fC 250 \KPC/
their distances measured accurately. The nearest Cepheid is Polaris, as it turns out, e
at dr = 130 + 10pc. The next nearest is § Cephei (the prototype after which all d M3 = 1S ‘ZdLHC
Cepheids are named), at d, = 270+ 10 pc. H1storlca11y, given the lack of Cepheid
parallaxes, astronomers have relied on alternative methods of normalizing the 0(”31’—"?60 l'(PC
period-luminosity relation for Cepheids. The most usual method involved finding £50
the distance to the Large Magellanic Cloud by secondary methods, then using
this distance to compute the mean luminosity of the LMC Cepheids. The current
consensus is that the Large Magellamc Cloud has a luminosity distance > di, =

f{{m = 50 =+ 2kpc, implying a distance to M31 of d; = 760 % 30kpc. o

 The fluxes and periods of Cephelds can be accurately measured out to lumi-
nosity distances d;, ~ 30 Mpc. Observation of Cepheid stars in.the Virgo-eluster
of galaxies, for instance, has yielded a distanceldL(Virgo) = 300d.(LMC) = 'SHP(, _

4 Within our galaxy, which is not expanding, the parallax distance, the luminosity distance, and the proper
distance are identical.
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15 Mpc. One of the motivating reasons for building the Hubble Space Telescope

in the first place was to use Cepheids to determine Hp. The net result of the Hubble

Key Project to measure Hy is displayed in Flgme 2.5, showing that the Cepheld TS

data are best fitted with a Hubble constant of Hy =75 £ 8kms~ i Mpc Y o736
There is a hidden difficulty involved in using Cepheid stars to cletermme H,. ﬁ?‘( ¢ .'.'

Cepheids can take you out only to a distance d; ~ 30Mpc; on this scale, the Zfaf Vo ‘}

universe cannot be assumed to be homogeneous and isotropic. In fact, the Local

Group is gravitationally attracted toward the Virgo cluster, causing it to have a

pecuhar motion in that direction. It is estimated, from dynamical models, that

the recession velocity cz that we measure for the Virgo cluster is 250 km s™!

less than it would be if the universe were perfectly homogeneous. The plot of

cz versus dy given in Figure 2.5 uses recession velocities that are corrected for

this “Virgocentric flow,” as it is called.

6.5 Standard Candles and Acceleration
/?('OI [/ CL

To determine the value of Hy without having to worry about Virgocentric flow
and other peculiar velocities, we need to deterpiine the luminosity distance to
standard candles with d; > 100 Mpc, or z > 0.02. To determine the acceleration
of the universe, we need to view standard candles for which the relation between
d;, and z deviates significantly from the linear relation that holds true at lower
redshifts. In terms of Hy and g, the luminosity distance at small redshift is, from
Equation 6.31,

~ O, f\'z(

c I —qo
d,~ —z]|1 . 6.44
o HOZ [ + 5 Z:| ( )
At a redshift z = 0.2, for instance, the 1um1n031ty d1stance dr in the Benchmark
Model (with g = —O0. 53) 18 5 percent larger ‘than dL in an empty universe (with
qo = 0).

For a standard candle to be seen at d;, > 1000 Mpc, it must be very luminous.
In recent years, the standard candle of choice among cosmologists has been type
la supernovae. A supernova may be loosely defined as an exploding star. Early
in the history of supernova studies, when little was known about their underlying
physics, supernovae were divided into two classes, on the basis of their spectra.
Type I supernovae contain no hydrogen absorption lines in their spectra; type II
supernovae contain strong hydrogen absorption lines. Gradually, it was realized
that all type II supernovae are the same species of beast; they are massive stars
(M > 8 Mg,) whose cores collapse to form a black hole or neutron star when their
nuclear fuel is exhausted. During the rapid collapse of the core, the outer layers
of the star are thrown off into space. Type I supernovae are actually two separate
species, called type Ia and type Ib. Type Ib supernovae, it is thought, are massive



stars whose cores collapse after the hydrogen-rich outer layers of the star have
been blown away in strong stellar winds. Thus, type Ib and type Il supernovae are
driven by very similar mechanisms — their differences are sa'pérﬁcial, in the most
literal sense. Type la supernovae, however, are something completely different.
They begin as ‘white dwarfs; that is, stellar remnants that are supported against
gravity by the quantum mechanical effect known as electron degeneracy pressure.
The maximum mass at which a white dwarf can be supported against its self-
gravity is called the Chandrasekhar mass; the value of the Chandrasekhar mass is
M=~ 14Mg. A white dwarf can go over this limit by merging with another white
(l‘\;varf or by accreting gas from a stellar companion. If the Chandrasekhar limit is
approached or exceeded, the white dwarf starts to collapse until its increased den-
sity triggers a runaway nuclear fusion reaction. The entire white dwarf becomes
a fusion bomb, blowing itself to smithereens; unlike type II supernovae, type Ia
supernovae do not leave a condensed stellar remnant behind.

Within our galaxy, type Ia supernovae occur roughly once per century, on
average. Although type Ia supernovae are not frequent occurrences locally, they
are extraordinarily luminous, and hence can be seen to large distances. The lumi-

¥
. . . == o }
nosity of an average type la supernova, at peak brightness, is L = 4 x 10° Ly | 53)\\0 ) [

Y

\

that’s 100 000 times more luminous than even the brightest Cepheid. For a few —15X} 9 j.M jc !

days, a type Ia supernova in a moderately bright galaxy can outshine all the other
stars in the galaxy combined. Since moderately bright galaxies can be seen at
z ~ 1, this means that type Ia supernovae can also be seen at 7 ~ 1.

So far, type Ia supernovae sound like ideal standard candles; very luminous
and all produced by the same mechanism. There’s one complication, however.
Observation of supernovae in galaxies whose distances have been well deter-
mined by Cepheids reveals that type Ia supernovae do not have identical lumi-
nosities. Instead of all having L = 4 x 10° L, their peak luminosities lie in the
fairly broad range L ~ (3 — 5) x 10° L. However, it has also been noted that
the peak lumlnosaty of a type Ia supernova is tightly correlated with the shape
of its light curve. Type Ia supernovae with luminosities that shoot up rapidly and
declin€ rapidly are less luminous than average at their peak; Eupernovae with
luminosities that rise and fall in a more leisurely manner are more luminous than
average. Thus, just as the period of a Cepheid tells you its luminosity, the rise and
fall time of a type Ia supernova tells you its peak luminosity.

At the end of the 20th century, two research teams, the “Supernova Cosmol-
ogy Project” and the “High-z Supernova Search Team,” conducted searches for
supernovae in distant galaxies, using the observed fluxes of the supernovae to con-
strain the acceleration of the expansion of the universe. To present the supernova
results, I will have to introduce the “magnitude” system used by astronomers to
express fluxes and luminosities. The magnitude system, like much else in astron-
omy, has its roots in ancient Greece. The Greek astronomer Hipparchus, in the
second century Bc, divided the stars into six classes, according to their apparent

A
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brightness. The brightest stars were of “first magnitude,” the faintest stars visible

\ wlae = to the naked eye were of “sixth magnitude,” and intermediate stars were ranked
5 Cyy [W as second, third, fourth, and fifth magnitude. Long after the time of Hipparchus,
' it was realized that the response of the human eye is roughly logarithmic, and

5 ‘im 6 . that stars of the first magnitude have fluxes (at visible wavelengths) about 100
\ é‘];\-_ -2 {; ¥ times greater than stars of the sixth magnitude. On the basis of this realizafion, '
PR the magnitude system was placed on a more rigorous mathematical basis.
s ([ - 1\/% Nowadays, the bolometric apparent magnitude of a light source is defined in
o terms of the source’s bolometric flux as L L
| m=-2510g0(/00, 0 U AL (65

where the reference flux £, is set at the value f, = 2.53 x 10~® watt m~2. Thanks to
the negative sign in the definition, a small value of m corresponds to a large flux f.
For instance, the flux of sunlight at the Earth’s location is f = 1361 watts m~2;
the Sun thus has a bolometric apparent magnitude of m = i26;8. The choice of
reference flux f, constitutes a tip of the hat to HipparE}Es, since for stars visible
to the naked eye it typically yields 0 < m < 6.
The bolometric absolute magnitude of a light source is defined as the apparent
magnitude that it would have if it were at a luminosity distance of d;, = 10pc.
: 5 Thus, a light source with luminosity L has a bolometric absolute magnitude
L = 'I \ T ;\\5 A A< JLTl-f’(JC

f -.jJ,. . \gw , ——— M = —-2.5log,,(L/Ly), (6.46)

4 =752 Ww .~

' /“\ where the reference luminosity is Ly = 78.7 L@, since that is the luminosity of

‘_»‘O i ot i g AT object that produces a flux f, = 2.53 x 10~ wattm~2 when viewed from a
24T ina

(o —distance of 10 parsecs. The bolometric absolute magnitude of the Sun is thus
(5 2.5 Log 78 U M = 4.74. Although the system of apparent and absolute magnitudes seems
Vhg == - ¢£ ¥2 wane strange to the uninitiated, the apparent magnitude is really nothing more than
2 a logarithmic measure of the flux, and the absolute magnitude is a logarithmic
Mg Mo = 5L A6 ’L*ﬂ neasure of the luminosity.

1 ‘9(" Given the definitions of apparent and absolute magnitude, the relation
~ugy=s 5[4 < between an object’s apparent magnitude and its absolute magnitude can be
J _ written in the form
. J; £ {Z:\ -5 \ J
_2¢. 'J_ﬁ(w;{{, / /N\/ Ca LA “J)”D M=m—5log, | —— ), (6.47)
/{ 10pc
“’{x) - where d 1s the luminosity distance to the light source. If the luminosity distance
v is given in units of megaparsecs, this relation becomes e
Ag= 10 o e v dr | -
e LB | I Mpe D\ S veey=
g “00des AV Since astronomers frequently quote fluxes and luminosities in terms of apparent

&
d@ =1 Ay and absolute magnitudes, they find it convenient to quote luminosity distances in

<

& 1)1
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The supernova data extend out to z ~ 1; this is beyond the range where an ex-
pansion in terms of Hy and g is adequate to describe the scale factor a(t). Thus,
the two supernova teams customarily describe their results in terms of a model
universe that contains both matter and a cosmological constant. After choosing
values of Q0 and Q4 0, they compute the expected relation between m — M
and z, and compare it to the observed data. The results of fitting these model
universes are given in Figure 7.6. The ovals drawn on Figure 7.6 enclose those
values of Q2,0 and 24,0 that give the best fit to the supernova data. The results
of the two teams (the solid ovals and dotted ovals) give very similar results. Three
concentric ovals are shown for each team’s result; they correspond to 10, 20, and
30 confidence intervals, with the inner oval representing the highest probability.
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FIGURE 7.6 The values of Q.0 (horizont\al axis) and Q4 ¢ (vertical axis) that best fit
the data shown in Figure 7.5. The solid ovals show the best-fitting values for the High-z Su-
pernova Search Team data; the dotted ovals show the best-fitting values for the Supernova
Cosmology Project data.
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Figure 6.5 Distance modulus versus redshift for a set of 580 type Ia supernovae. The
bold solid line gives the expected relation for the Benchmark Model. For comparison, the

dot-dash line indicates a flat, lambda-only universe;-and-the dotted line a flat, matter-only
universe. [data from Suzuki et al. 2012, ApJ, 716, 85]

Figure 6.6 The values of Q,0 and Q240 that best fit the supernova data. The bold
elliptical contour represents the 95% confidence interval. For reference, the dashed line
represents flat universes, and the dotted line represents coasting (g0 = 0) universes:
compare to Figure 5.6. [AnZe Slosar & José Alberto Vizquez, Brookhaven National
Laboratory]
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terms of the distance modulus to a light source. The distance modulus is defined 7

as m — M, and is related to the luminosity distance by the relation /2(,\ | d, ! Ll ‘pt r,
)MM :\‘M Fl‘i" g"'“ d 'If.r

3 £ /M2 ,m M)_Slogm( L >+25' (6.495T1¢ | SO : 8.3
Soace u{’ ‘i-«‘;_09éac»!(>( II- I Mpc '\"‘}H |_f (7 RS

The distance modulus of the Large Magellanic Cloud, for instance, at d; =Viry 3§0 2.
0.050 Mpc, is(m — M F= 18 5. The distance modulus of the Virgo cluster, aty_ | My |
d, = 15 Mpc 1Sfm — M, = 30.9. When z « 1, the luminosity distance to am\ we | XYoo | S
light source is ' /} 00 Mpe |
[/ N B i g5 2o |5zl auz
(é éu =) dp ~ —z (1 + ) : (6.50) 7= ¢ t‘cf.) | 460
- » < Ho . 1-F [70.& iaﬁ, z
~Substituting this relation into Equation 6.49, we have an equation that gives the ;. i | \?(;{ﬁ 4n.d
w4 L Jrelation between dlstance modulus and redshift at low redshift:

f/uu’ {w\u ,,{( 205t Zek)

s ot 4323510 (g S ) s e sst-a 050 (5[50,
& A= -J.h\ﬁ
For a population of standard candles with known luminosity L (and hence of ¥=© AC2 *X
< ‘< W V known bolometric absolute magnitude M), we measure the flux f (or equivalently
" the bolometric apparent magnitude ) and the redshift z. In the limit 'z~ 0,a
({d ) plot of m — M versus log z gives a straight line whose amplitude at a fixed z tells
{ 7 us the Value of Hy. At slightly larger values of z, the deviation of the plot from
s Ned 2 stralght line tells us whether the expansion of the universe is speedmg up or
Wi uf1 slowing down. At a given value of z, standard candles have a lower flux in an
! accelerating universe (with gy < 0) than in a decelerating universe (with g > 0).
i Figure 6.5 shows the plot of distance modulus versus redshift for a compi-
lation of actual supernova observations from a variety of sources. The solid line
running through the data is the result expected for the Benchmark Model. At a
redshift z ~ 1, supernovae in the Benchmark Model are about 0.6 magnitudes
fainter than they would be in a ﬂat matter-only universe; it was the observed
faintness of Type Ia supernovae at z > 0.3 that led to the conclusion that the
universe is accelerating. However, at z &~ 1, supernovae in the Benchmark Model
are about 0.6 magnitudes brighter than they would be in a flat, lambda-only uni-
verse. Thus, the observations of Type Ia supernovae that tell us that the universe is
accelerating also place useful upper limits on the magnitude of the acceleration.
Figure 6.6 shows the results of fitting the supernova data with different model
universes; these models contain both matter and a cosmological constant, but are
not required to be spatially flat. The bold ellipse represents the 95% confidence
interval; that is, given the available set of supernova data, there is a 95% chance
that the plotted ellipse contains the true values of §2y0 and €24 o. Notice from the
plot that decelerating universes with gg > 0 (below the dotted line) are strongly
excluded by the supernova data, as are Big Crunch universes and Big Bounce




universes. However, the supernova data, taken by themselves, are consistent with
positively curved or negatively curved universes, as well as with a flat universe.
We will see in Chapter 8 how observations of the cosmic microwave background
combine with the supernova results to suggest that we live in a universe that is
both accelerating and spatially flat, with Qo ~ 0.3 and Q0 ~ 0.7.
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Exercises

Suppose that a polar bear’s foot has a luminosity of L = 10 watts. What is
the bolometric absolute magnitude of the bear’s foot? What is the bolometric
apparent magnitude of the foot at a luminosity distance of d; = 0.5km? If
a bolometer can detect the bear’s foot at a maximum luminosity distance of
dr = 0.5km, what is the maximum luminosity distance at which it could
detect the Sun? What is the maximum luminosity distance at which it could
detect a supernova with L = 4 x 10° Lg?

Suppose that a polar bear’s foot has a diameter of £ = 0.16 m. What is the
angular size 56 of the foot at an angular-diameter distance of dy = 0.5km?
In the Benchmark Model, what is the minimum possible angular size of the
polar bear’s foot?

Suppose that you are in a spatially flat universe containing a single com-
ponent with a unique equation-of-state parameter w. What are the current
proper distance dp(fy), the luminosity distance d;, and the angular-diameter
distance dy as a function of z and w? At what redshift will d4 have a max-
imum value? What will this maximum value be, in units of the Hubble
distance? .

Verify that Equation 6.51 is correct in the limit of small z. (You will probably
want to use the relation log;(1 + x) ~ 0.4343In(1 + x) ~ 0.4343x in the
limit x| < 1.) '

The surface brightness ¥ of an astronomical object is its observed flux
divided by its observed angular area; thus, £ o f/(80)?. For a class of
objects that are both standard candles and standard yardsticks, what is &
as a function of redshift? Would observing the surface brightness of this
class of objects be a useful way of determining the value of the deceleration
parameter go? Why or why not?

You observe a quasar at a redshift z = 5.0, and determine that the observed
flux of light from the quasar varies on a timescale 8z, = 3days. If the
observed variation in flux is due to a variation in the intrinsic luminosity

“of the quasar, what was the variation timescale 47, at the time the light was

emitted? For the light from the quasar to vary on a timescale §¢,, the bulk
of the light must come from a region of physical size R < Ry = c(8t,).
What is Ry, for the observed quasar? What is the angular size of Ry, in
the Benchmark Model?
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