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In a spatially homogeneous and isotropic universe, the relation between the
energy density £(z), the pressure P(f), and the scale factor a(¢) is given by the
Friedmann equation,

TRIED HAN (9>2 _&8G, kg 5.1)
a 3c? R2a?
the fluid equation,
6% Copr jomy i u/-?noﬂ} . 39(8 +P) =0, (5.2)
and the equation of state, ’
EOL Co{& ACcal e hion €Y P=we. | (5.3)

In principle, given the appropriate boundary conditions, we can solve Equations
5.1,5.2,and 5.3 to yield &(¢), P(t), and a(¢) for all times, past and future. In reality,
the evolution of our universe is complicated by the fact that it contains different
components with different equations of state. Let’s start by seeing how the energy
density ¢ of the different components changes as the universe expands.

5.1 Evolution of Energy Density

The universe contains nonrelativistic matter and radiation — that’s a conclusion
as firm as the earth under your feet and as plain as daylight. Thus, the universe
contains components with both w = 0 and w = 1/3. It contains dark energy that is
consistent with being a cosmological constant (w = —1). Moreover, the possibil-
ity exists that it may contain still more exotic components, with different values of
w. Fortunately for the cause of simplicity, the energy density and pressure for the
different components of the universe are additive. ‘Suppose that the universe con-
tains N different components, with the ith component having an energy density s;
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and an equation-of-state parameter w;. We may then write the total energy density
¢ as the sum of the energy density of the different components:

(1?& ARLZE , '
€= Ei. 64
/é{ 22 ) ( = W.% Z (
f/r.mﬂ{ ONENTS L | v .
The total pressure P is the sum of the pressures of the different components:
P = wi&;. — i 5.5
Xij ' e (5.5)
Because the energy densities and pressures! add in this way, the fluid equation
must hold for each component separately, as long as there is no interaction
between the different components. If this is sp, then the component with equation-
of_-state parameter w; obeys the equation
4‘{,_'..1\)1_\(3 A ; 7 L, ] J f) }/ 1.. O ]/ ) a \/
Fotw) [t # = &i+3-(ei+P)=0 (5.6)
) (11 62) ( 6y a
or =
., 28 22
b+ 3-(1+we = 0> &==2(hw)g, 5.7)
Equation 5.7 can be rearranged to yield
de; da
8_’ = —3(1 +w,-)7 (5.8)
W 5.1 | %5Cow (5.9 ’ R
\ [l \ If we assume that wl is constant, then >ﬂ({f;
Hutud Vil d o N i A
{MM w‘ @wbuney do 4 ei(a) = eipa 30, : (5.9)

} & /{ £ =) G0
@]ﬂ P8 (‘ """"S Note that Equation 5.9 is derlved solely from the fluid equation and the equation
Dectuny Ate. of state; the Friedmann equation doesn’t enter into it.

q
Conses W=o mw:% From Equation 5.9, we conclude that the energy density &,, associated with

nonrelativistic matter decreases as the universe expands with the dependence

@ 0) MATEX  PoHiwaTED Em(@) = Emo/a@. 6/0&”% LM)$(5 10) W= 0

The energy density in radiation, &,, drops at the steeper rate
QN: L| Regdrion LorivdieD g (a) = ,0/d". / (b i S y ot “(5 le)) =L
T <
Why this difference between matter and rad1at1on‘7 We may write the energy
density of either component in the form ¢ = nE, where n is the number den-
sity of particles and E is the mean energy per particle. For both relativistic and
nonrelativistic particles, the number density has the dependence n a3 as the
universe expands, assuming that particles are neither created nc?r_clestroyed:
The energy of nonrelativistic particles, shown in the top panel of Figure 5.1,
is contributed solely by their rest mass (E = mc?) and remains constant as the
universe expands. Thus, for nonrelativistic matter, &,, = nE = n(mc*) o« a=3.
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Figure 5.1 The dilution of nonrelativistic particles (“matter”) and relativistic particles

(“radiation”) as the universe expands.

The energy of photons or other massless particles, shown in the bottom panel

of Figure 5.1, has the dependence E = hc/A a~', since their wavelength A

expands along with the expansion of the universe. Thus for photons and other

massless particles, &, = nE = n(hc/A) x a7 a™! o a™. L cosipie STEPHA - RATRHAMYS
Although we’ve explained why photons have an energy density &, o« a™¢,

the explanation required the assumption that photons are neither created nor

destroyed. This assumption is wrong: photons are always being created by

luminous objects and absorbed by opaque objects.! However, it turns out that

the energy density of the cosmic microwave background is larger than the energy

density of all the photons emitted by all the stars in the history of the universe. To

see why this is true, remember, from Section 2.5, that the present energy density

of thq CMB, which has a temperature Ty = 2.7255K, is

5o SCMBO=aT;,‘=4175x 107Jm™ = 0.2606 MeV m™". (5.12)

Expressed as a fractlon of the critical density, the CMB has a dens1ty parameter

SCMB_Q 0.2606 MeV m™—>
, \ SemBo = =
G2 ) 5 €0 4870 MeV m

—

=5.35 x 107, (5.13)

Although the energy density of the CMB is small compared to the critical density,
it is large compared to the energy density of starlight. Galaxy surveys tell us that
the present luminosity density of galaxies is

W~ 1.7 x 108 Lo Mpe™ & 2.2 x 1073 watts m . (5.14)

! The Sun, for instance, is emitting 1043 photons every second, and thus acts as a glaring example of photon
non-conservation.
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(By terrestrial standards, the universe is not a well-lit place; this luminosity den-
sity is equivalent to a single 30-watt bulb within a sphere 1 AU in radius.) As a
very rough estimate, let’s assume that galaxies have been emitting light at this rate
for the entire age of the universe, f &~ H;' & 4.5 x 10'7s. This gives an energy

m / density in starlight of
Aween Esartignto ~ Who ~ (2.2 x 1073 Ts ' m3)(4.5 x 10'75)

@ﬁdM P / ~ 107" Jm™ ~ 0.006 MeV m™ -(.5_77 619,

Thus, we expect the average energy density of starlight to be just a few percent of 065“ A
the energy density of the CMB. In fact, the estimate given above is a very rough
one indeé‘cr Measuréments of background radiation from ultraviolet to infrared
the larger value Estarlight/ ECMB_~ 0 1. In the past however, the ratio of starhght
density to CMB density was smaller than it is today. For most purposes, it is an
acceptable approximation to ignore non-CMB photons when computing the mean
energy density of photons in the universe.
The cosmic microwave background, remember, is a relic of the time when
the universe was hot and dense enough to be opaque to photons. If we extrapolate
further back, we reach a time when the universe was hot and dense enough to
be opaque to neutrinos. As a consequence, there should be a cosmic neutrino
background today, analogous to the cosmic microwave background. The energy
density in neutrinos should be comparable to, but not exactly equal to, the energy
density in photons. A detailed calculation indicates that the energy density of each
neutrino flavor should be

74\
E = g (ﬁ) ECMB — 0227 SCMBC E,V (516)

(The above result assumes that the neutrinos are relativistic, or, equivalently, that
their energy is much greater than their rest energy mvc .) The density parameter of
R the cosmic neutrino background, taking into account all 1 three flavors of neutrino,
('5,!‘@-;*{ < => should then be Qv = 0.681Q¢cwMms, as long as all neutrino flavors are relativistic.
-t The mean energy per neutrrno will be comparable to, but not exactly equal to, the
/ mean enel ay per ‘photon: b

(2.%) - r_";_\) o _Ax 1074V
GEts s oV [ SFv=0iay= B =, 61
as long as B, E, > mvc When the mean energy of a particular neutrino species
drops to < m,c?, then it makes the transition from being “radiation” to being

“matter.”
If all neutrino species were effectively massless today, with m,c> <« 5 x
10~*eV, then the present denslty Par -ameter %I'l{l di atron would be Qr’t AlL |

Q,O_QCMBO+QUO_5%5>< 1075 +3.65 x 10- =9.00 x 10-‘ (5.18)
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We know the energy density of the cosmic microwave background with high pre-
cision. We can calculate theoretically what the energy density of the cosmic neu-
trino background should be. The total energy density of nonrelativistic matter, and
that of dark energy, is not quite as well determined. The available evidence favors
a universe in which the density parameter for matter is currently Q,,0 ~ 0.31,
while the density parameter for the cosmological constant is currently 2, o ~
0.69. Thus, when we want to employ a model that matches the observed properties |
of the real universe, we will use what I call the “Benchmark Model”; this model
has Q2,9 = 9 O x 107 in radiation Qmo = 0.31 in nonrelativistic matter, and
Qao=1-= = Qo ~ 0. 69 i 1n a cosmological constant.

In the Benchmark Model, at the present moment, the ratio of the energy
density in A to the energy density in matter is

en0 _ Q0 069 oo 968 9.2
Em0 Qm.{) 0.31 ' . 22

In the language of cosmologists, the cosmological constant is “dominant” over
matter today in the Benchmark Model. In the past, however, when the scale factor
was smaller, the ratio of densities was {0"STANT | '

( "lr exla) 81\:0 Qa0 3l
O I| gm(a) gm,O/a QmO _/l
If the universe has been expanding from an initial very dense state, at some
moment in the past, the energy density of matter and A must have been equal.
This moment of matter— A equality occurred when the scale factor was
0272}
~ 07606.= L (5.21)
1286

(5.19)
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Do 0.69

Similarly, the ratio of the energy density in matter to the energy density in radia-
tion is currently o
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£ 1) ero Qo 9.0 x 10-5

if all three neutrino flavors in the cosmic neutrino background are assumed to be
relativistic today. (It’s even larger if some or all of the neutrino flavors are massive
enough to be nonrelativistic today.) Thus, matter is now strongly dominant over

radiation. However, in the past, the ratio of matter density to energy density was

-2
em(a) . Sm,Oa im & X 0(, B (5.23)

Sr(a) &r0 . i—FDX A -4
Thus, the moment of radiation-matter equality took place when the scale
factor was

2 Note that the Benchmark Model is defined to be spatially flat.
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1 ZCoo
Em,0 —4 ’V?W
A = — ~ —— x~29%x10 .‘9—2 7 1(5.24)
g0 3400 ';f;é

Note that as long as a neutrino’s mass is m,c> < (3400)(5 x 10™%eV) ~ 2¢V,
then it was relativistic at a scale factor a = 1/3400, and hence would have been
“radiation” then even if it is “matter” today.

To generalize, if the universe contains different components with different
values of w, Equation 5.9 tells us that in the limit @ — 0, the component with the
Ia:gesE vaiubf\:kof w is dominant. If the universe expands forever, then as a — oo,
the coﬁ\ponent with the smallest value of w is dominant. The evidence indicates

we live in a universe where radiation (w = 3) was dominant during the eally

stages, followed by a period when matter (w = 0) was dormnant followed by a

period when the cosmological constant (w = —1) is dominant.

In a continuously expanding universe, the scale factor a is a monotonically
increasing function of #. Thus, in a continuously expandlng universe, the scale
factor a can be used as a surrogate for the cosmic time .. We can refer, for
instance, to the moment when a = 0.766 with the assurance that we are referring
to a unique moment in the history of the universe. In addition, because of the
simple relation between scale factor and redshift, 1+z = 1/a, cosmologists often
use redshift as a surrogate for time. For example, they make statements such as,
“Matter-lambda equality took place at a redshift z,,4 = 0.31.” That is, light that
was emitted at the time of matter—lambda equality is observed by us with its
wavelength stretched by a factor 1 + z,,4 ~ 1.31. Eu N 2 6 .28 -0 r’é w,én

One reason why cosmologists use scale factor or redshift as a surrogate for
time is that the conversion from a to ¢ is not simple to calculate in a multiple-
component universe like our own. In a universe with many components, the

Frledmann e uatlon can be written in the form 3
d (143w, ) é,/ﬁ ) "(547)

Fronm eq_ v wl: - 8”GZe,, = 22 (525)
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Each term on the rig it-hand side of Equat:on 5.25 haq different dependence on
scale factor; radlatmn contributes a term o g2 mattel contnbutes aterm &« a~

SIS

‘curvature contributes a term mdependent of a, and the cosmological constant

A contributes a term o . Solving Equation 5.25 for a multiple-component
model like the Benchmark Model does not yield a simple analytic form for a(f).
However, looking at single-component universes, in which there is only one term
on the right-hand side of Equation 5.25, yields useful insight into the physics of
an expanding universe.

5.2 Empty Universes

A particularly simple universe is one that is empty — no radiation, no mattef no
cosmological constant, no contribution to & of any sort For this universe, the

h R T . T ™ 7 -~ fr— e G e
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One solution to this equation has @ = 0 and ¥ = 0. An empty, static, spatially flat P
{ -_

; universe is a permissible solution to the Friedmann equation. This is the universe .
s o — — _‘f'

whose geometry is described by the Minkowski metric of Equation 3.37, and in +
which all the transformations of special relativity hold true.

However, Equation 5.26 tells us that it is also possible to have an empty Al )

— e P e B

universe with ¥ = —1. (Positively curved empty universes are forbidden, since .o
— [
: that would require an imaginary value of @ in Equation 5.26.) A negatively cury d b\
: empty universe must be expanding or contracting, with N 2
EIPTY UNIVERSE = & =0 c .
E  NechAve Coevatute =2K= - 7 5 a== R—OZ Mozt -l-:'—— (5.27) £
%

¥ T (LEDY f”;"l‘} =t ' “\‘/ §'(_- (-Gl‘)gj \.:_ . . . . .
In an expanding empty universe, integration of this relation yields a scale factor

.' of the form? I

:l'- \ —l |

¥ t- Ly —_ |

3 a(t) = t__, "FUL ll'g‘{ 0= @20 = HO |l|(5-28)
0 ) : \

where tp = Ry/c. In Newtonian terms, if there’s no gravitational force at work,

then the relative velocity of any two points is constant, and the scale factor a

simply increases linearly with time in an empty universe. —{= | @g)—Ho — CONTTANT FOR,
The scale factor in an empty, exf)gﬁiding universe is shown as the dashed line ALl

in Figure 5.2. Note that in an empty universe to = HO_ 1. with nothing to speed / ND ACCCLL;

e i -~ O VoCetL ‘/

time.
An empty, expanding universe might seem nothing more than a mathematical

curiosity.* However, if a universe has a density ¢ that is very small compared to the

! critical density ¢, (that is, if Q < 1), then the linear scale factor of Equation 5.28

is a good approximation to the true scale factor. Imagine you are in an expanding

universe with a negligibly small value for the density parameter 2, so that you

can reasonably approximate it as an empty, negatively curved universe, with #, =
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H o = Ro/c. You observe a distant light source, such as a galaxy, which has a
redshift z. The light you observe now, at z‘ = ro, was emitted at an earlier time,
ya c . t=1,.In an empty expanding universe, } 5.20)
Xe A N 1 i
JECEETNE S SV I ISR W g
! [”Lﬁk{) aly | ‘ ¢ a(te) fe
; S0 it is easy to compute the time when the light you observe from the source was
emitted: ( /(;. ) (5 2 \
Pl i S A =T ) = L1
:-' OUQ f‘ﬂ/& AF‘IJ./ SIM 1 A ; i r{} .i HOI ‘EO-‘: \ ll!‘l (5 30)
VIRECT gecAiond Bviwes .'(l 14z 142z o YRone
Cotng TiE AN EERtHIFT jlaosel

% Such an empty, negatively curved, expanding universe is sometimes called a lene universe, after the

cosmologist E. A, Milne, who pioneered its study in the 1930s.
4 If a universe contains nothing, there will be no observers in it to detect the expansion.
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Figure 5.2 Scale factor versus time for an expanding, empty universe (dashed), a flat,
matter-dominated universe (dotted), a flat, radiation-dominated universe (solid), and a
flat, A-dominated universe (dot-dash).

When observing a galaxy with a redshift z, in addition to asking, “When was
the light from that galaxy emitted?” you may also ask, “How far away is that
galaxy?” In Section 3.5 we saw that in any universe described by a Robertson—
Walker metric, the current proper distance from an observer at the origin to a
galaxy at coordinate location (r, 6, ¢) is (see Equation 3.44)

df(t =
(é QL( at o Cottovivg )= '_
, Yroper A =
k O DNCTANE »dy (1) -—a(fo)/ dr=r&= RO 530"\
Age) ¥ f)f Ar= Aty " ViSG ’ NETANCE  ivce, arfto)= |
Moreover, if light is emitted by the galaxy at time £, and detected by the observer
at time #y, the null geodesic followed by the light satisfies Equation 3.54:
.n:’ g']
\, to dt i
25\()::.) c/ /dr_r*d\i 5.32)
(’ / te a(f) 0 f / :

Thus, the current proper distance from you (the observer) to the galaxy (the light
source) is ) |
bUROPEN. TrcT AnCE e ALL T o g
- . S d(to):c/ —.
TR A~ ) ONVERSES: . a0)
o Equatlon 5.33 holds true in any universe whose geometry is described by a
Robertson—Walkel metric. In the specific case of an empty expandlng umverse( M L[lm,c)

(5.33)

“._,_/-_1(?6) \ aét) = é/to, a‘nd thus | ) 0.
, 0 dt fo y |
d d — i Yy cp [fL1.)
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Figure 5.3 The proper distance to an object with observed redshlft z, measured in units

of the Hubble distance, ¢/Hy. Left panel: the proper distance at the time the hght is
observed. Right panel: proper distance at the time the light was emitted. Line types are

the same as those of Figure 5.2.
iy
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This relauon is plotted as the dashed line in the left panel of Figure 5.3. In the limit
z < 1, there is a linear relation between d, and z. In the limit z > 1, however,
H,,—ocln z in an empty expanding universe.

~In an empty expanding universe, we can see objects that are currently at an
arbitrarily large distance. At first glance, it may seem counterintuitive that we can
see a light source at a proper distance much greater than ¢/Ho when the age of
the universe is only 1/H,. However, remember that d,(tp) is the proper distance
to the light source at the time of observation; at the tirne of emission, the proper

| v
£y
L

distance d,(f,) was smaller by a factor a(t,) /a(to) = 1/(1 + 2). In an empty 7

(/ ) expanding universe, the proper distance at the time of emission was

e e d(e)—i—“( s ahee (536)
55 0N /§ ,1+Z_ INTTAGCE

y IR 14 \ ;‘-,.,.

universe, d (t ) has a maximum for objects with a redshlft Z=e—-1~w 1.72, ]
where d,(t,) = (1/e) c/Hy ~ 0.37 ¢/H,. Objects with much higher redshifts are ;.. »,

seen as they were very early in the history of the umverse When their proper
distance from the observer was very small Y
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\/ — 5 3 Smgle component Unlverses 0

. OBEYS INVERSE SQUAZE LAW AT ¥ 2
Setting the energy density ¢ equal to zero is one Way of SImphfym g the Frledmann

equation. Another way is to set « = 0 and to demand that the universe contain
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278 9 The Thermal History of the Universe
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Fig. 9.3. The thermal history of the Cosmic Microwave Background Radiation according to
the standard Big Bang picture. The radiation temperature decreases as T, o a™! except for
small discontinuities as different particle-antiparticle pairs annihilate at kKT & mc?. Various
important epochs in the standard picture are indicated, including the neutrino and photon
barriers. In the standard model, the Universe is optically thick to neutrinos and photons prior
to these epochs. An approximate time-scale is indicated along the top of the diagram

energies hv > 13.6¢eV in the high energy region of the Planck distribution to ionise
all the neutral hydrogen present in the intergalactic medium. We will often refer to
the region of the Planck spectrum with photon energies E = hv >> kT as the Wien
region It may at first appear strange that the temperature is not closer to 150,000 K,
the temperature at which (hv) = kT = 13.6¢V, the ionisation potential of neu-
tral hydrogen. The important points to note are that the photons far outnumber the
baryons in the intergalactic medium and that there is a broad range of photon energies
present in the Planck distribution.

It is a useful calculation to work out the fraction of photons in the Wien region
of the Planck distribution with energies 4v > E in the limit 2v > kT'. Their number

\
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only a single component, with a single value of w. In such a spatially flat, single-
component universe, the Friedmann equation takes the form

3 ?\/LYZA LiTED
s i = SO0 maiam) (5.37)

(FUW) 3c?
To solve this equation, we first make the educated guess that the scale factor has
‘the power-law for nf a o t1.\The left-hand side of Equation 5.37 is then o 12972,

and the right-hand side is oc r~(1+3%)4, yielding the solution

T N
qg= 2\ Tor v - (5.38)

3+3w |
hLﬁMNf‘ '
with the restriction w % —1. With the proper normahzatlon the scale factor in a
spatially flat, single-component universe is Je N \ O
/- TN, LWV LISV |
AW \ J ¥
e = () = | — =) /EYA ‘ (5 39)
| -+ Z(t) lo f e frr b
2 u ; fet |

The age of the universe, to, 1s linked to the present energy density by the relat1on'

¢ !

1 cz 1/2 = 12 o)
to = ( ) &) o= ‘:"“f{( ) (5-40)
1 +w \6rGegy (5.“1)()

The Hubble constant in such a universe is

Ho = (“) SR (5:41)
T \a/), 3A+w° '
The age of the universe, in terms of the Hubble time, is then
)\ - - f e 2 KaAd
o= —— H1li % (542

In a spatially flat universe, if w > —1/3, the universe is s younger than the Hubble
time. If w < —1/3, the universe is older than the Hubble time.

T As a function of scale factor, the energy density of a component with
equation-of-state parameter w is ( S q + (& —?-Gj s N_2ftes)
_ 3 & .. ALY . 3
_ f 201 o
s(a) = goa 20 Y 5 j (5.43)

L(-/O i
soina spatlally flat universe with only a single component, the energy density as
a function of time is (combining Equations 5.39 and 5.43)

enlt)
e(f) = & (—) ; (5.44)
\ B

regardless of the value of w. Making the substitution & "

N\ _ 3¢, o {0; «TnCs(Hw)z =
Pn fr— Pnn pr— _II..__H ﬁ'i_t;\_ 2N (5 45)
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; Equation 5.44 can be written in the form ~, (,, = O 5 ) G : ?7
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'.i Suppose yourself to be in a spatially flat, single-component universe. If you
? y see a galaxy, or other distant light source, with a redshift z, you can use the relation
8 // ‘o /
3 r ( L_;. > f-r 2/(3+3w) .
. e ] [ pg=200_ (r—") wildls alke)= 1 (5.47)
§ ( 2 a(te) le
¥ to compute the time 7, at which the ltght from the distant galaxy was emltted L
§ v o T T YT ebsas i
! 3 . - 0 ' - _(2) 2 02\ 2 e
% -(,e_) : , = ) Mo s le= (1 + z)3+w)/2 E@(I & W)H{JR(I +Z)3(I+w)fz\-' (J 5.48) ‘l Z ) FELATION
| e x AN | '._.,' l
4 The current Bmper dlstance to the galax“y“i?;'\'“"( ; AERS d e
jHL\/ > ')/ f 3(1 W) (Coshne CLack(s
- 0 L i -
dy(to) = ¢ f cto———=—T[1 — (/1) WA (5.49
Koo s () 20~ T o/10) (5.49)
%d‘ “When w # —1/3.In terms “of HO and’ 7z rather than ro and 7,, the current proper _
"Jdlstance 18 e : > -1 TIPC .}., 3
o iy . our_FIRET fpl®
: 67l(’,_|!\-._ { , ” | ( ) _ [ _ (1 +Z)—(l+3w)/2]. (5.50) {IF-J; | ATION 2
pAtO .
| = - [T VAGD ¥ w

The most distant object you can see (in theory) is one for which the light
emitted at r = O is just now reaching us at ¢t = fy. The proper distance (at the time
of observation) to such an object is called the horizon distance.’ Here on Earth,
the horizon is a circle centered on you, beyond which you cannot see because of
the Earth’s curvature. In the universe, the horizon is a spherical surface centered
on you, beyond which you cannot see because light from more distant objects has
not had time to reach you. In a universe described by a Robertson—Walker metric,
the current horizon distance is

U
dnor (f0) = C/ —. (5.51)
0

a(t)
In a spatially flat universe, the horizon distance has a finite value if w > —1/3.In
such a case, computing the value of d () in the limit , — O (or, equlvalently,

z — 00) yields [J Wi) wiTH £e=0 5‘\2) P L
2 Ko oL

” W= MATTER
\ 3(1+w)\_//c,-- 2 ),_

=1 . (5.52)

dhor(f0) = clo———F7— = —
) L+dw Hl 3wl UV o fin el RapidTion
In a flat universe dominated by matter (w = 0) or by radiation (w = 1/3),

an observer can see only a finite portion of the infinite volume of the universe.

5 More technically, this is what’s called the particle horizon distance; we’ll continue to call it the horizon
distance, for short.



80 Model Universes

The portion of the universe lying within the horizon for a particular observer is
referred to as the visible universe for that observer. The visible universe consists
of all points in space that have had sufficient time to send information, in the
form of photons or other relativistic particles, to the observer. In other words, the
visible universe consists of all points that are causally connected to the observer.
Ina ﬂa_t universe with w < —1/3, the horizon distance is mﬁmte and all of
space is causally eonnected to any observer. 1In such a universe with w == 1/3,
you could see every point in space — assuming the universe was transparent, of
course. However, for extremely distant points, you would see extremely red-
shifted versions of what they looked like extremely early in the hlstory of the

- s universe. N 2 - oo (M ij
\ )/L)LJSCL _T‘y‘_,)&/l‘\/( (D D/) :_a./,:/ ’(f’C’]”)r;f--.;f_)/~&_..,_-..) POQ /

P
5 3.1 Matter onl

C i :(\-‘ f‘(ﬁ?\lo() (\,( l{(—ll. wS & {\f)\—b\/ a (/{ !]LU_,' (/'ﬁ,.L“ .-

Let s now look at specific examp]eq of spatially flat"universes, starting with a t

universe containing only nonrelativistic matter (w = 0).° The age of such a :
universe is -
—1

2 Z g‘__ /

(5@ 0= b (5.53) ._

and the horizon distance is r @. - < i

3 (? \JV{C\ Ty = H() _"

(= :2) = hor (to) = 3cty = 2¢/Hy="¢-%0 (5.54)

T

The scale factor, as a function of time, is
\: :”',, Af —t Ndbl/ ( i_,ﬁ\/l_,ig\’\ "

t 2/3 e =™
bze)=> (1) = (5) (e _@e=r) 659 :
illustrated as the dotted line in Figure 5.2. If you see a galaxy with redshift z }
in a flat, matter-only universe, the proper distance to-that galaxy, at the time of :

. \-Vz »
by |=2&ls —vg e [=tplo)

' — e P T0 df te 1/3 2C ]
(5.50)> o) = ¢ [ W=30rg|:1—(5) ]ZFIE[I 7:],.(556)4((2‘%)

illustrated as the dotted line in the left panel of F1gure 5.3. The proper distance at
the time the light was emitted was smaller by a factor 1/(1 + z):

/ ArGVLAL ) 2c
52} = dylte) = g |1 - =olfte .
\ %) SI#E DUST . o) = Hy(1 +2) l: ] li ) (5:57)
illustrated as the dotted line in the i rlght panel of Flgure 5.3. In a flat, matter-
lH /LJ £.£q | only universe, d,(t,) has a maximum for galaxies with a redshift z = 5/4, where |\
d (te) = (8/27)c/Hy =~ 0. 30c/H0 ®

Such a universe is sometimes ml led an Einstein—de Sitter universe, after Albert Einstein and the cosmologist
Willem de Sitter, who jointly wrote a paper on flat, matter-dominated universes in 1932.

0 o - A p P [ T Tl P
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The case of a spatially flat umvelse containing only :adranon is of particular mter—
est, since early in the history of our own universe, the radiation (w = 1/3) term
} dominated the right-hand side of the Friedmann equation (seeFEquation 5.25).
: Thus, at early times — long before the time of radiation—-matter equality — the
" universe was well described by a spatially flat, radiation-only model. In an
expanding, flat universe containing only radiation, the age of the universe is

? -\
(5 hé) fo = %:‘Z Ho (5.58)
0

s

and the horizon distance at #y is
~—~ - N = “ C
(>\s¢) = (1) = 2ty = =125 | (5.59)
N Hy

In the special case of a flat, radiation-only universe, the horizon distance is exactly
equal to the Hubble distance, which is not generally the case. The scale factor of

a flat, radiation-only universe is
RADETion Vo HiNATED

N ¢ 1/2
6%6) = a(t) = (5) ' MoT R exevson/ (5-60)

illustrated as the solid line in Figure 5.2. If at a time #y you observe a distant light
source with redshift z in a flat, radiation-only universe, the proper distance to the
light source will be

(PR’\)QL R ICT

(% &
(55 o (o) = fe(r/ro)‘ﬂ 201‘0[1 ( } ﬂg\s 0(9(7(561)

illustrated as the solid line in the left panel of Figure 5. 3 The proper dlstance at
the time the light was emitted was |

A R A 1 Py A S L 8 S e A

ﬁNf oA € VAT r d ¢ 2 A (1 -(_'/' 5.62
6@9'9 TANCE i | HoO+o? | 60
111ustrated as the solid line in the right panel of Figure 5.3. In a flat, radiation- /:,,; S 5/6

dominated universe, dj,(z,) has a maxgnum for light sources with a redshift z = 1 ( PR OVE
where d,(t.) = 0.25¢/H. T - A
From Equatlon (5.46), the energy density in a flat, radiation-only universe is

5. %)S » _
_ 3 Er N Ep (TN o /) AT
m o) = (tp) ~0.0307 (tp> =5t) 563)=(X]

Using the blackbody relation between energy density and temperature, given in
Equations 2.28 and 2.29, we may assign a temperature to a universe dominated
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Here Tp is the Planck temperature, Tp = 1.42 x 1032 K. The mean energy per
photon in a radiation-dominated universe is then

=172 5 )
Lt (2 7) Z-.=== Emean(t) ~ 27kT(t) ~ 17EP (i> “:.’/‘:' E‘L“-mﬁo‘ui{i’%/) ;' (565)
(ﬂ ¢ ‘ ] :

and the number density of photons is (comblnmg Equatlons 5 63 and 5 65)

| 0018 e
n(t) = & o0 (};) cvvu(*/) [ (5.66)

Emean (t) 1 63

In a flat, radiation-only universe, as t — 0, &, — oo (Equation 5.63). Thus, at
the instant ¢ = 0, the energy den31ty of our own universe (well approximated
as a flat, radiation-only model in its early stages) was infinite, according to this
analysis; this infinite energy density was provided by an infinite number density of
particles (Equation 5.66), each of infinite energy (Equation 5.65). Should we take 3
these infinities seriously? Not really, since the assumptions of general relativity,
on which the Friedmann equation is based, break down at ¢ ~ 5.

Why can’t general relativity be used at times earlier than the Planck time?
General relativity is a classical theory; that is, it does not take into account
the effects of quantum mechanics. In cosmologlcal contexts, general relativity
assumes that the energy content of the universe is smooth down to arbitrarily small
scales, instead of being parceled into individual quanta. As long as a radiation-
dominated universe has many quanta, or photons, within a horizon distance, then
the approximation of a smooth, continuous energy density is justifiable, and we
may safely use the results of general relativity. However, if there are only a few
photons within the visible universe, then quantum mechanical effects must be
taken into account, and the classical results of general relativity no longer apply.
In a flat, radiation-only universe, the horizon distance grows linearly with time:

s

= -L;Wh*-;_'_u' e T S S

(S (’I) p
&E \ §L Ip
S SO {ﬁe volume of the visible universe at time ¢ is ‘ i
'|i\ 47'[ t 3
(f’s 67)=> Vir(t) = —<-di ~ 344, (;) : (5.68)

Combining Equations 5.68 and 5.66, we find that the number of photons m<;1de
the horlzon at time 7 18 2/

P ‘ 6] o™
(5.6¢) ) £\ |3 8d nsba’| & 4
R =" N(t) = Vior(Dn(t) ~ 0.6 (—) o\ T g “(5.69)
+t’s .l'.') ij' J - I‘-‘U ;0 Ate / ’\;( - o~
The quantization of the universe can no longer be ignored when N(r) 1. oi
3

equivalent to a time ¢ & 1.4zp. 4 ~o B

To accurately describe the universe at its very earliest stages, prior to the [\ le, i
Planck time, a theory of quantum gravity is needed. Unfortunately, a complete 1




theory of quantum gravity does not yet exist. Consequently, in this book, we will %
not deal with times earlier than the Planck time, ¢ ~ rp ~ 10~%s, when the

number density of photons was n ~ Lp 53~ 10“}4 and the mean photon
energy was Epean ~ Ep ~ 108 ¢V, T
/-'—‘
c L
1" §S){% -(AOV:{I?,{;)? g/; {{’ Ve % -u/,\mw “@C"‘H“"‘\t'ﬁw
T %J“‘“A Vs 3.3 Lmbda only ]w— —\ ‘a_

Consider a spatially flat universe in which the energy density is contributed by a
cosmological constant A.” For a flat, lambda-dominated universe, the Fnedmann

equation takes the form X/ (A
/ 3J)7 87 G H:Je} \ o T (ré: 'z
. TGEA = &
W= ) @ = 3 a? ~>\a Z " (570
WK=0 FL (u Gzzf%
where ¢, is constant with time. This equation can be rewritten in the orm (4. r’q ) A i"f,
” Z §uG
(Q*-éﬁj Z\..:,_EZKL%,\ a=Hya, wivi Ho= 5 ' i {;\(to (5.71)
where

T ‘/ n{:
A72)

VI, (k)
o= (2202) " Simee AOM

The solution to Equation 5.71 in an expanding llI‘lIVEI'bfL]S—

}a(t)— eHol—10) = )/H Ia\ (5.73)

ThlS scale factor 18 shown as the dot—dashed hne in Flgure 5. 2 A spatlally flat
we’ve seen an exponentially expanding universe before, in Sectlon 2.3, under the
label “Steady State universe.” In a Steady State universe, the density ¢ of the
universe remains constant because of the continuous creation of real particles. If
the cosmologlcal constant A is provided by the vacuum energy, then the density
¢ of a lambda-dominated universe remains constant because of the contmuous
creation and annihilation of virtual particle-antiparticle pairs. T

A flat universe containing ﬁafhlng but a cosmological constant is infinitely
old, and has an infinite horizon distance dy,. If, in a flat, lambda- -only universe,

you see a light source with a redshift z, the Proper distance to the light source, at Lo -
the time you observe it, is MNode 2 iyu - ‘C\{' o a3 /“’):/‘M‘C we ane et Q@“)
{ / L dp(fo) — c/ eHo(.'o-t)dr = i[eﬂu(m—rﬂ) — 1] = ——Z,-:A{‘ ;(5 74) — RO
L/// )I, =l 5| e H{J _
- ""EhSwn as the dot-dashed line in the left panel of Figure 5.3. The proper d1stance
at the time the light was emitted was \ Ho.-tz_, a.(_ﬂ_)
DAl %+‘2) al) =Q -

7 Such a universe is sometimes called a de Sitzer universe, after Willem de Sitter, who pioneered its study in
the year 1917.
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shown as the dot-dashed liné in the right panel of Figure 5.3.

An exponentially growing universe, such as the flat lambda-dominated model,
is the only universe for which d;,(#) is linearly proportional to z for all values
of z. In ¢ other u universes, the relation d (to) o z holds true only n the'hmit zZ << 2/

In a flat lambda-dominated universe, a light source with z >> 1 is at a distance
dy(t0) > c¢/Hy at the time of observation; however, the observed photons were
emitted by the light source when it was at a distance d,(.) ~ ¢/Hy. Once the light
source is more than a Hubble distance from the observer, its recession Ve1001ty is
‘greater than the speed of light, and photons from the light source can no longer
reach the observer.

5.4 Multiple-component Universes

The simple models that we’ve examined so far — empty universes, or flat universes
with a single component — continue to expand forever if they are expanding at
t = ty. Is it possible to have universes that stop expanding, then start to collapse?
Is it possible to have universes in which the scale factor is not a simple power-law
or exponential function of time? The short answer to these questions is “yes.” To
study universes with more complicated behavior, however, it is necessary to put
aside our simple toy universes, with a single term on the right-hand side of the
Friedmann equation, and look at complicated toy universes, with multiple terms
on the right-hand side of the Friedmann equation.

The Friedmann equation, in general, can be written in the form

_ v \2

(‘ VERALSZED Hip? 87 ke &
bhann EQC & = SQ _R2 (t)2 B (U

e

(5.76)

where H = a/a, and () is the energy de/r}sfty)conttlbuted by all the components
of the universe, including the cosmological eonstaht Equatlon 4.36 tells us the
relation between «, Ry, Hy, and Qp, / ] &

\ /e [ K¢

K
R2 O = )= >

2.

[

(5 '273

Kl

\ ,/“1”/1;!?1' !
/ oU (o AW ){slo we can“Lewrlte the Friedmann equation without exphclﬂy including the
curvature: .
'/
H? = 8w - 01, 578
- —E — — :
32 ()2 0 (5.78)

Dividing by H2, this becomes
1 ]
wld, &
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where the critical density today is C; %>

302H§

G (5.80)
We know that our universe contains matter, for which the energy density &,

has the dependence ¢,, = ¢,,0/a’, and radiation, for which the energy density

has the dependence &, = ¢,9/a*. Current evidence indicates the presence of

a cosmological constant, with energy density e, = ¢ A0 = constant. We will

therefore consider a universe with contributions from matter (w = 0), radiation

Eco =

(w = 1/3), and a cosmological constant (w = —1).8 o
In our universe, we expect the Friedmann equation to take the form a INFLATION
(616 2)) i NOTE Sigv cmance vt ($H6) T ReQu RS -
(- .9 _',:' H QrO QmO . I—QO {:—
/e VT —=—+—+Q . 5.81) k)= \ v
(S c;éb J H2 at a3 A,O@ a2 (ﬁ‘\{ ( ) }

where Q.0 = £,0/8¢0, @m0 = &m0/Eco, Qa0 = SAO/SC(;: and Q0 = Q.0 +Q. o+—Q/\ o"]
Qmo + Qa0 The Benchmark Model has Qo = 1, and hence is spatially flat.
However, although a perfectly flat universe is consistent with the data, it is not
demanded by the data. Thus, prudence dictates that we should keep in mind
the possibility that the curvature term (1 - Qo)/a in Equation 5.81, might be

11onzero.
Since H = a/a, multiplying Equation 5.81 by a2, then taking the square root,a (
ields i
y (4 | 2 JH}R 1%
Az | . Qro  Qm, =7
] f A i}; Ho_la:[ szo)] (5. 82)
@. [ Ho di a
5 The cosmic time 7 as a function of scale factor a can then be found by performing . (P
< | «
Coic ﬁieﬁf el pgic ex@usion inreGia H/w & 6] o e )
4 f = Hor. ™ (svs’a%’m (FL )7
j B = 0 [82:0/@ + Quo/a+ Qppa® + (1 — Qo)]1/2 N a eaponalle egd o

This is not a user-friendly integral: in the general case, it doesn’t have a simple - @¢,. Qv /TN

analytic solution. However, for given values of Q, 05 Qmo, and Q, o, it can be n/zr-@l; anmd r»{},{_

integrated numerically. \/n({ ) (Foy 3.2\ 2 a e
In many circumstances, the integral in Equation 5.83 has a simple analytlc My 5.0 :

2.2 00 ) approximation to its solution. For instance, in the limit that a < a,,, &~ 2.9x 1074, ﬁ 03 ja J

the Benchmark Model can be approximated as a flat, radiation-only universe. @

(2 40?6? n the limit that a > ampn ~ 0.77, it can be appzommated as a lambdd-only

: universe. However, durmg some epochs of the universe’s expansion, two of the

; components are of comparable density, and provide terms of roughly equal size

0 in the Friedmann equation. During these epochs, a single-component model is a

. -W‘.;"a\fﬁ- BTl R = e (3R CT

8 We can’t rule out the possibility that the dark energy has w # —1, or the possibility that the universe contains
even more exotic contributions to its energy density (w =?). These possible developments are left as an
exercise for the reader.
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poor description of the universe, and a two-component model must be utilized.
For instance, at scale factors a ~ a,, ~ 2.9 X 104, the Benchmark Model
is approximated by a flat universe containing only radiation and matter. Such a
universe is examined in Section 5.4.4. For scale factors a ~ a,x ~ 0.77, the
Benchmark Model is approximated by a flat universe containing only matter and
a cosmological constant. Such a universe is examined in Section 5.4. 2 ”

First, however, we will examine a universe that is of great historical interest
to cosmology; a universe containing both matter and curvature (either negative
or positive). During the mid-twentieth century, when the cosmological constant
was out of fashion, cosmologists concentrated much of their interest on the study
of curved, matter-dominated universes. In addition to being of historical interest,
these curved, matter-dominated universes provide useful physical insight into the
interplay between curvature, expansion, and density.

5.4.1 Matter + Curvature

Consider a universe containing nothing but pressureless matter, with w = 0. If
such a universe is spatially flat, then it expands with time, as demonstrated in
Section 5.3.1, with a scale factor

2/3
(g, 55) = at) = (%) . (5.84)

Such a flat, matter-only universe expands outward forever. Such a fate is some-
times known as the “Big Chill,” since the temperature of the universe decreases
monotonically with time as the universe expands. At this point, it is nearly oblig-
atory for a cosmology text to quote T. S. Eliot: “This is the way the world ends /
Not with a bang but a whimper.”

In a curved universe containing nothing but matter, the ultimate fate of the
cosmos is intimately linked to the density parameter €2¢. The Friedmann equation
in a curved, matter-dominated universe (Equatlon 5.81) can be written in the form

- !C‘f(\ v vfune
MATTER 4 S H®* N =% (5.85)
(‘?@)WIT“(‘;M ;-;.0NL\/"/ H} I at ’ '

since 2,0 = €2 in such a universe. Suppose you are in a universe that is currently
expandmg (H, > 0) and contains nothing but nonrelativistic matter. If you ask the
question, “Will the universe ever cease to expand?” then Equation 5.85 enables
you to answer that question. For the universe to cease expanding, there must be
some moment at which H(f) = 0. Since the first term on the right-hand side of

9 Interestingly, this quote is from Eliot’s poem The Hollow Men, written, for the most part, in 1924, the year
when Friedmann published his second paper on the expansion of the universe. However, this coincidence
seems to be just that — a coincidence. Eliot did not keep up to date on the technical literature of cosmology.
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Equation'5.85 is always positive, H(#) = 0 requires the second term on the right-
hand side to be negative. This means that a matter-dominated universe will cease
to expand if Q¢ > 1, and hence ¥ = +1. At the time of maximum expansion,
H(#) = 0 and thus o

N [, 0, Q 1-Q
H(&)‘:ﬂ - ié? = .(_;_‘; _’.l ¥4Z 0= 3 0 -+ 5 ¢ 4 (586)
\ 7t y ac / max @nax
The scale factor at the time of maximum expansion will therefore be
V4
Qo _ () __th 5.87
= L) = G ot (5.87)

07/

where 2, remember, is the density parameter as measured at a scale factorq = 1= 0L(“:o>

Note that in Equation 5.85, the Hubble parameter enters only as H?. Thus,
the contraction phase, after the universe reaches maximum expansion, is just the
time reversal of the expansion phase. (More precisely, the contraction is a perfect
time reversal of the expansion only when the universe is perfectly homogeneous
and the expansion is perfectly adiabatic, or entropy-conserving. In a real, lumpy
universe, entropy is not conserved on small scales. Stars, for instance, generate
entropy as they emit photons. During the contraction phase of an Qy > 1 universe,
small-scale entropy-producing processes will NOT be reversed. Stars will not

absorb the photons they previously emitted; people will not live backward from

grave to cradle.) Eventually, the €y > 1 universe will collapse down to a=0,

in an event sometimes called the “Big Crunch,” after a finite time ¢ = lomunch. A
matter-dominated universe with 2y > 1 not only has finite spatial extent, but also
has a finite duration in time; just as it began in a hot, dense state, so it will end in
a hot, dense state.

A matter-dominated universe with 29 > 1 will expand to a maximum scale
factor apmay, then collapse in a Big Crunch. What is the ultimate fate of a matter-
dominated universe with Qow< 1 and k = —1? In the Friedmann equation for
such a universe (Equation 5.85), both terms on the right-hand side are positive.
Thus if such a universe is expanding at a time 7 = 1, it will continue to expand
forever. At early times, when the scalé factor is small (a <« Qo/[1 — 20]), the
matter term of the Friedmann equation will dominate, and the scale factor will
grow at the rate a o 2/3. Ultimately, however, the density of matter will be diluted
far below the 'critical”(_iensity, and the universe will expand like the negatively
curved empty universe, with a L.

If a universe contaiﬁ;ﬁothj;rfig but matter, its curvature, its density, and its
ultimate fate are closely linked, as shown in Table 5.1. At this point, the obligatory
quote is from Robert Frost: “Some say the world will end in fire / Some say in
ice”!% In a matter-dominated universe, if the density is greater than the critical

10 This is from Frost’s poem Fire and Ice, first published in Harper’s Magazine in December 1920. Unlike T. S.
Eliot, Frost was keenly interested in astronomy, and frequently wrote poems on astronomical themes.
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Table 5.1 Curved, matter-dominated universes.

Density Curvature Ultimate fate
Qo<1 k=-—1 Big Chill (a o 1)
Q=1 k=0 Big Chill (a o £2/3)
Qo> 1 k=41 Big Crunch

density, the universe will end in a fiery Big Crunch; if the density is less than or
equal to the critical density, the universe will end in an icy Big Chill.

In a curved universe containing only matter, the scale factor a(f) can be
computed explicitly. Tthe Friedmann equation can be written in the form

' O~ | A - A& a 0
y { v — - = —= 1'—9 588
(&) (E/}/,(ﬁ HO %{_) H(Z) p + ( 0)s ( )
so the age t of the universe at a given scale factor a is given by the integral
0 | MBETTER ) / i da
W1 ¢ Hot = . 5.89
(_3“?"/?0“ CORNATORE ONLY ° o [Qo/a+ (1 —Q)]'/2 (5:89)
When € # 1, the solution to this integral is most compactly written in a para-
metric form. The solution when 2 > 1 is ( WK=-+1)
k]/u -
_; C Howl @ PisCLES (S K"" e ‘/ a(t) = 2 Qo — 1(1 — cos o) (5.90)
| , and\a q ” ; Z/ Q = A _7)”_6;({‘ we COD&D”“RV?E W TH 0_(; Q; ran
X Suettt alb) | % O Y=\
H0) = 6 — sin6), 5.
© = 55 = E @ ~ 5ino) (5.91)
where the parameter ¢ runs from 0 to 2. Given this parametric form, the time
that elapses between the Big Bang at® = 0 and the Big Crunch at & = 27 can be
computed as
L'Tf ( 2,-? T Qo
3 o leminch = Tty 5.92
'Eé/maw a7y 12 < “ T Ho (Qo — 1)3/2 054
A plot of a versus ¢ in the case Q = 1.1 is shown as the dotted line in Figure
5.4. The a tzf Eelqavior of an ¢ = 1 universe is shown as the solid line.
The solution of Equation 5.89 for the case €29 < 1 can be written in paramet-
ric form as T ke~
u | 1 Q
[ 626 (96 ] atn) = 57— (coshn = 1) (5.93)
sq2)(FGH 21 -
o yel | /-,
HSHond 1DV ) e A ’i'nP(E-LME cconviie (04y€ =)
LN 1 Qo far W=
X oueih &9 ) = (sinh 7 — 1), (5.94)

2H, (1 — )32

TP G T ] et il e b

it

A M AU A R

et




B ST hp R TR L 0] (o A R

T T

w551 NS N

{1 M e

e O

e Tcal

.-_.IlI|Iil|||l||||r|||l’/l,1: 31”|”H[H”|”/|, (?6
40_._ :--"‘:’ - B % - =
: " :, - : 7 : VW’ ,(( 0.‘,
L. )L ZB | Il |
e e I —hlpie Cilce
© = . © — 4 R /1<
20 : = = 1 a(t) &1
- YO D fa 1__ <" TOTY ] -
N SO Al ] -/ 1 fon 0
) 2 N e cis 1 /e o
- . - 1 (eds
o 1||1||[|1:|]||i||||[| 1 SRR RRERA RNRRA RN
0 20 40 60 80 100 p -1 0 1 2 3

Tony! Holtt) Lozl =2Tig \IEUN ¢ Ho(t-to)
AETERL V0 My &
Figure 5.4 Scale factor versus time for universes contalnmg only matter. Solid hne a(t)

for a universe with Q¢ = 1 (flat). Dashed line: a(f) for a universe with Qo = 0.9
(negatively curved). Dotted line: a() for a universe with €2 = 1.1 (positively curved).
The right panel is a blow-up of the small rectangle near the lower left corner of the left
panel.

where the parameter 1 runs from 0 to /infinity. A plot of a versus ¢ in the case
€20 = 0.9 is shown as the dashed line in Figure 5.4. Although the ultimate fate
of an Qg = 0.9 universe is very different from that of an Qg = 1.1 universe, as
shown graphically in the left panel of Figure 5.4, it is very difficult, at # = , to tell
a universe with €2y slightly less than one from that with €2 slightly?r&fer than
one. As shown in the right panel of Figure 5.4, the scale factors of the €, = 1.1
universe and the Qo = 0.9 universe start to diverge significantly only after a
Hubble time or more.

Scientists sometimes joke that they are searching for a theory of the universe
that is compact enough to fit on the front of a T-shirt. If the energy content of
the universe were contributed almost entirely by nonrelativistic matter, then an
appropriate T-shirt slogan would be:

DENSITY | 2
f ( oL

o

| IS
| DESTINY!

If the density of matter is less than the critical value, then the destiny of the
universe is an ever-expanding Big Chill; if the density is greater than the critical
value, then the destiny is a recollapsing Big Crunch. Like all terse summaries of
complex concepts, the slogan “Density is Destiny!” requires a qualifying foot-
note. In this case, the required footnote is “*if A = 0. If the universe has a

the equation Density = Destlny Curvature no longer applies.
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5.4.2 Matter + Lambda

Consider a universe that is spatially flat, but contains both matter and a cos-
mological constant. (Such a universe is of particular interest to us, since it is a
close approximation to our own universe at the present day.) If, at a given time
I = fy, the density parameter in matter is €2,,0 and the density parameter in a

cosmological constant A is €2, o, the requirement that space be flat tells us that

lpot o= & Fo=1-%no, /K=0) (5.95)
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and the Friedmann equation for the flat “matter plus lambda” universe reduces to

16 T<l / 2 :

: ! 5 LB a_g,. U=o] 59

Hj a ~
The first term on the right-hand side of Equation 5.96 represents the contribution
of matter, and is ar—ys positive. The second term represents the contribution
of a cosmological constant; it is posmve if 2,0 < 1, implying Q40 > 0, and
negative if Q0 > 1, implying Qo < 0. Thus, a flat universe with Q, ¢ > 0 will
continue to expand forever if it is expanding at ¢ = fo; this is another example
of a Big Chill universe. In a universe with Q};o < 0, however, the negative
cosmological constant provides an aftractive force, not the repulsive force of
a positive cosmological constant. A flat umverse'wnh Qa0 < 0 will cease to
expand at a maximum scale factor

Z Qm 0 13
Jv/_:; Amax = (Q 5 '_ 1) ’ (597)
and will collapse back down to @ = 0 at a cosmic time

s a1
). _,-'3 crunch — 3H, Qm,o = 1'

(5.98)

For a given value of Hy, the larger the value of €2, ¢, the shorter the lifetime of the
universe. For a flat, Q4 o < O universe, the Friedmann equation can be integrated
to yield the analytic solution

Foe —Qap<o

2 a \"?
T §9F  Hot= —e g™ ( ) . 5.99
M g'ﬂ/r{ ) \ ,K ] 0 3 Qm,o — 1 [ alnax ( )

A plot of a versus f in the case Qo = 1.1, Q50 = —0.1 is shown as the dotted
line in Figure 5.5. The a o >/ behavior of an Qo = 1, Qa0 = 0 universe is
shown, for comparlson “as the solid line. A flat universe with S2p0 < 0 ends in
a Big Crunch, reminiscent of that for a positively curved, matter—only universe.
However, with a negative cosmological constant providing an attractive force, the
lifetime of a flat universe with €25 o < 0 is exceptionally short. For instance, we

have seen that a positively curved universe with €2,,0 = 1.1 undergoes a Big
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Crunch after a lifetime foppe ~ 110H,, ! (Figure 5.4). However, a flat universe ﬁ/
with Q0 = 1.1 and x5 = —0.1 has a lifetime of only frynen & 7H .
Although a negative cosmological constant is permitted by the laws of
physics, it appears that we live in a universe with a positive cosmological constant.
In a flat universe with €, < 1 and 2, o > 0, the density contributions of matter
and the cosmological Constant are equal at the scale factor (Equauon 5.21):

} . 1/3 7 —% e ) "3’;
f\j Zu — Amp = (%"_0) = (._Q’L’o.) < 2 N(’f*(s 100) /“"-'\” Sh
a0 L= Sng e Vo 28 G

For a flat, Q4 ¢ > 0 universe, the Friedmann equation can be integrated to yield
$ the analytic solut10n
| O\ o

_. Ww LW il L\ Y
i Hyt = —————1In 14+ —

i —x —fHOl"/ \ v 3”' 1 — Qm,O (amA) * (am/\)
= __(g 10(:{)

' ;_}{ o A plot of a versus ¢ in the case Q,,0 = 0.9, Q4 = 0.1 is shown as the dashed

line in Figure 5.5. At early times, when a < as, Equatlon 5.101 reduces to the

(5.101)

Al ¢ TRUE
relation - 2/7 ToR H y = (»1)
3 2/3 I I RPN X X
a(t) ~ <—\/ Qm,OHOZ‘) S - (5.102) 4 . 19)
2 (\-\oi‘:f;) (LLp - :"_-_M.,j.
giving the a o« 1** dependence required for a flat, matter-dominated universe. At
late times, when a >> a,,,,\, Equation 5.101 reduces to
a(t) R Amp €Xp(y/ 1 — Q0 Hot), (5.103)
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Figure 5.5 Scale factor versus time for flat universes containing both matter and a
cosmological constant. Sohd line: a(¢) for a universe with Q2,0 = 1, Q A0 = 0. Dashed
line: a(¢) for a universe w1th Qo = O 9, Qprp0 = 0.1. Dotted line: a(t) for a universe
with Q,,0 = 1.1, Q4 0 = —0.1. The nght panel is a blow-up of the small rectangle near
the 16Wer left corner of the left panel.
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giving the a « e dependence required for a flat, lambda-dominated universe.
Suppose you are in a flat universe containing nothing but matter and a cosmolog-
ical constant; if you measure Hy and £2,,, then Equation 5.101 tells you that the

age of the universe is

o)) t 2H" [\/1— mo+1} (5.100
. \— 0= )
sAot) I 31— Qup $2m0

If we approximate our own universe as having Q2,0 = 0.31 and Q, o = 0.69, we
find that its current age is 0,22 (0.6 \,J
N L .'( 7 ’

to = 0. 955Hﬂ = %3 ﬂ: 0.40 Gyr, (5.105)
12.8
assuming Hy = 68 + 2kms~! Mpc™!. (We’ ll see in Section 5.5 that ignoring

the radiation content of the universe has an insignificant effect on our estimate
of tp.) The age at which matter and the cosmological constant had equal energy

density was A 2 0. 23»

=]
In[1 ++2] = 0.707H;' = 10.17 £ 030Gyr.  (5.106)

— wap0

Thus, if our universe is well described by the Benchmark Model, with €,,, =

Iman =

0.31 and 259 ~ 0.69, then the cosmological constant has been the dominant

component of the universe for the last 3.6 billion years or so. /=
- 1' 7.

5.4.3 Matter + Curvature + Lambda

By choosing different values of €2, and €2, o, without constraining the universe
to be flat, we can create model universes with scale factors a(t) that exhibit very
interesting behavior. Start by writing down the Friedmann equation for a curved

universe with both matter and a cosmologwal constant D=0

= Qi 0

H Q, 1—9,?1—9 n
2 g 9 A°+QA0 (5.107)

3 aq > \, az -

& ' LAH»«?)/\
If ©,,0 > 0 and QA 0> 0, tehen both the flI‘Sl and last term on the right-hand side

of Equation 5.107 are posmve However, if 2,0 + Q24,0 > 1, so that the universe
is positively curved, then the central term on the right-hand side is negative. As
a result, for some choices of 2,0 and €2, o, the value of H2 will be positive for
small values of a (where matter dominates) and for large values of a (where A
dominates), but will be negative for intermediate values of a (where the curvature
term dominates). Since negative values of H? are unphysical, this means that
these universes have a forbidden range of scale factors. Suppose such a universe
starts out with @ > 1 and H < 0; that is, it is contracting from a low-density,
A-dominated state. As the universe contracts, however, the negative curvature
term in Equation 5.107 becomes dominant, causing the contraction to stop at
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Figure 5.6 Properties of universes containing matter and a cosmological constant. The
dashed line indicates flat universes (¢ = 0). The dotted line indicates universes that are
not accelerating today (go = 0 at a = 1). Also shown are the regions where the universe
has a “Big Chill” expansion (@ — oo as t — 00), a “Big Crunch” recollapse (a — 0 as
t — fcrunch), a loitering phase (a & constant for an extended period), or a “Big Bounce”
(@ = amin > 0 at 1 = fpounce)-

a minimum scale factor a = ayn, and then expand outward again in a “Big
Bounce.” Thus, it is poss1ble to have a universe that expands outward at late times,
but never had an initial Big Bang, witha = 0 at t = 0.

Kﬁ&ﬁﬁosmbﬂﬂy, if the values of SZ,; (; and A0 are chosen just right,
is a “loitering” universe. Such a universe starts in a matter-dominated state,
expanding outward with a oc £2/3, Then, however, it enters a stage (called the
loitering stage) in which a is very nearly constant for a long period of time.
During this time it is almost — but not quite — Einstein’s static umverse After
the loitering stage, the cosmologlcal constant takes over, and the universe starts
to expand exponentially.'!

Figure 5.6 shows the general behavior of the scale factor a(f) as a function of
Q2,0 and 2 o. In the region labeled “Big Crunch,” the universe starts with a = 0
at t = 0, reaches a maximum scale factor g, then recollapses toa = O at a
finite time ¢ = fyyney. Note that Blg Crunch universes can be posmvely curved,
negatively curved, or ﬂat In the region labeled “Big Chill,” the universe starts
witha=0atr=0, then expands outward forever, with @ — oo as ¢ — 0. Like
Big Crunch universes, Big Chill universes can have any sign for their curvature.

11 A loitering universe is sometimes referred to as a Lemaftre universe, since Georges Lemaitre discussed, in
his 1927 paper on the expanding universe, the possibility of a loitering stage extending into the indefinitely
distant past.
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Figure 5.7 Scale factor versus time in four different universes, each with Qmo = 0.31.
Dotted line: a flat “Big Chill” universe (259 = 0.69, ¥k = 0). Dashed line: a “Big
Crunch” universe (24,0 = —0.31, k = —1). Dot-dash line: a loitering universe (2 AO =
1.7289, k£ = +1). Solid line: a “Big Bounce” universe (24,0 = 1.8, x = +1).

In the region labeled “Big Bounce,” the universe starts in a contracting state,

reaches a minimum scale factor a = amin > O at some time foypce, then expands

outward forever, with a — oo as t — 0. Universes that fall just below the
dividing line between Big Bounce universes and Big Chill universes are loitering
universes. The closer such a universe lies to the Big Bounce-Big Chill dividing
line in Figure 5.6, the longer its loitering stage lasts.

To illustrate the possible types of expansion and contraction, Figure 5.7 shows
a(z) for a set of four model universes. Each of these universes has the same current
density parameter for matter: Q,,o = 0.31, , measured att = to and a = 1. These
universes cannot be dlStlIlnglShed from each other by measurmg their current
matter density and Hubble constant. Nevertheless, thanks to their different values
for the cosmological constant, they have very different pasts and very different
futures. The dotted line in Figure 5.7 shows the scale factor a(¢) for a universe
with Q2,0 = 0.69; this universe is spatially flat, and is destined to end in an
expoﬁénﬁally expanding Big Chill. The dashed line shows a(f) for a universe
with 24 o = —0.31; this universe has an energy density of zero, and is negatively

cur ved After expanding to a maximum scale factor am 1 93 it w111 recollapse |

a0 = 1.7289; thls isa posltlvely curved loitering universe, which spends a long
time with a scale factor a ~ Aoiter > 0.45. Fmally, the solid line shows a universe
with 2,4 o 3_1_8 This universe lies above the Big Ch111—]_31g Bounce dividing line
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in Figure'5.6; it is a positively curved universe that “bounced” at a scale factor
a = Apounce ~ 0.552. If we lived in this Big Bounce universe, the largest redshift
we could see would be Zmax = 1/@houmee — 1 ~ 0.81. Extremely distant light
sources would actually be blueshifted. [ | o

J
5.4.4 Radiation + Matter ’
Ly hO _‘[__‘0,.,» 3x
In our universe, rad1at1on—r£1_a_t_tgr equality took place at a scale factor a,, = _(;w on 2% 0%
Q0/ Qo ~ 2.9 x 10~*. At scale factors a < Gy, the universe is well described
by a flat, radiation-only model, as described in Section 5.3.2. At scale factors *Vwm < ~550
a ~ an,, the universe is better described by a flat model containing both radiation /
and matter. The Friedmann equation around the time of radiation-matter equality
can be written in the approximate form
H* Q.0 Qo
— = — +——. xa 5.108
Hg a* / ( ) '_/"
____This can be rearranged in the form L To A7 87&’!0 -
T 1 1/ arw‘ fo
Rl 5 1 ada a 7' "(lm v
v o) (13 Hodi= o 2] (5.109)
,()/ «!— r” { A/Af‘m
7{ (0 Y AL Ay

Integratlon ylads a falrly simple relation for ¢ as a function of a during the epoch
when only radiation and matter are significant:

4a? a gy e
Hyt = —=—|1—-{1- 1+ — . 5.110
’ 380 ( 2arm) < arm) ( )

In the limit a < a,, this gives the appropriate result for the radiation-dominated
phase of evolution,

an (2./Qr,0 H0t>1/2 [a < aml. (5.111)

In the limit @ > a,, (but before curvature or A contributes significantly to the
Friedmann equation), the approximate result for a(f) becomes

3 2/3
a~ (5./52,”’0 H0t> [a > a,,]. (5.112)

The time of radiation—matter equality, #,,, can be found by setting a = a,,, in
Equation 5.110:

3{2

4( 1 ) az _ Q.

tm==11—— —rmH (5.113)
3 "/z YV QF,O Szm(}
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2.
0 262
0.043

0%
For the Benchmark Model, with 2,9 = 9. 0 x 1073, Qmo = (_)_31 and H I

14.4 Gyr, the time of ladlatlon—mattel equahty was
2.2 ¢i4,000
=3 47 x 107°Hy! = 50000 yr. (5.114)

The epoch when the universe was radiation-dominated was only about 50 mil-

lennia long. This is sufficiently brief that it justifies our ignoring the effects of

o9\

radiation when computing the age of the universe. The age #p = 0.955H, I =
13.7 Gyr that we computed in Section 5.4.2 (ignoring radiation) would only be
altered- by a few parts per million if we included the effects of radiation. This
minor correction is dwarfed by the uncertainty in the value of Hy N

5.5 Benchmark Model

The Benchmark Model, which we have adopted as a good fit to the currently
available observational data, is spatially flat, and contains radiation, matter, and
a cosmological constant. Some of its properties are listed, for ready reference,
in Table 5.2. The Hubble constant of the Benchmark Model is assumed to be
Hy = 68kms~! Mpc™!. The radiation in the Benchmark Model consists of pho-
tons and neutrinos. The photons are assumed to be provided solely by a cosmic
microwave background with current temperature 7o = 2.7255K and density
parameter 2, o = 5.35 x_107°. The energy density of the cosmic neutrino back-
ground is theoretlcally calculated to be 68.1% of that of the cosmic microwave
background, as long as neutrinos are relat1v1stlc If a neutrino has a nonzero

mass m,, Equation 5.17 tells us that it defects from the “radiation” column to

Table 5.2 Properties of the Benchmark Model.

Important epochs

List of ingredients
_ 2618
Photons: y,0 =535 X 103 =y L .;’:._-,_ a \.'E < i
Neutrinos: ‘, 0=3.65x107 N
Total radiation: Qr0=90x10" = l' ot &
. %<+ Baryonic matter: Qpary,0 = 0.048
i Nonbaryonic dark matter: Qdm,0 = 0.262
Total matter: Qmp=031 222 [ aAd
Cosmological constant: Qp 0~ 0.69 ’”gér)

Radiation—matter equality: arm = 2.9 x 10 ~4 V20 trm = 0.050 Myr
Matter-lambda equality: ama = 0.77 = 'I/O ?X.a tma = 10.2Gyr (/ LLGyr «e ’
Now: ap =1 to = 13.7Gyr |2 % '
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the “matter” column when the scale factor is a ~ 5 x 10~ eV/(myc %), The
matter content of the Benchmark Model consists partly of baryonic matter (that
is, matter composed of protons and neutrons, with associated electrons) and partly
of nonbaryonic dark matter. The baryonic material that we are familiar with from
our everyday existence has a density parameter Cbary,0 & 0.048 today. The density
parameter of the nonbaryonic dark matter is over five times greater Qdmo 7

0.262. The bulk of the energy density in the Benchmark Model, however, is not

provided by radiation or matter, but by a cosmological constant, w1th Q A0 =
1_521::,0 10"’069 éP) |
With Q,9, Q0. and A0 known, the scale factor a(¢) can be computed
numerically using the Friedmann equation, in the form of Equation 5.81. Figure
5.8 shows the scale factor, thus computed, for the Benchmark Model. Note that

the transition from the a o< /2 radiation-dominated phase to the a o 1%/3 matter-

dominated phase is not an abrupt one; neither is the later transition from the
matter-dominated phase to the exponentially growing lambda-dominated phase.
One curious feature of the Benchmark Model illustrated vividly in Figure 5.8 is
that we are living very close to the time of matter—lambda equality (at least, as
plotted on a logarithimic scale). A cone ipevee 21

Once a(t) is known, other properties of the Benchmark Model can be com-
puted readily. For instance, the left panel of Figure 5.9 shows the current proper

distance to a galaxy with redshift z. The heavy solid line is the result for the

LI I I O
2._
L J)
0:_.‘_:'::':::::Z::::::::::::::::::::::::::.‘:.‘.’Z:::::::::: —
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Figure 5.8 The scale factor a as a function of time ¢ (measured in units of the
Hubble time), computed for the Benchmark Model. The dotted lines indicate the time
of radiation—matter equality, a,n ;:2.74-9“;“16:4:‘&'1‘6 time of matter-lambda equality,
amA”_—/—;O.?_?_,_ and the present moment, ag = 1. _
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Figure 5.9 The proper distance to a light source with redshift z, in units of the Hubble
distance, c¢/H. mnel shows the distance at the time of observation; the right
panel shows the distance at the time of emission. The bold solid line indicates the
Benchmark Model. For comparison, the dot-dash line indicates a flat, lambda-only

R SN

“universe, and the dotted line a flat, matter-only universe.

P R O

Benchmark Model; for purposes of comparison, the result for a flat lambda-
only universe is shown as a dot-dash line and the result for a flat matter-only
universe is shown as the dotted line. In the limit z — oo, the _proper distance
dy (o) approaches a limiting value d, — 3.20¢/H,, in the case of the Benchmark
Model. Thus, the Benchmark M odeI has a finite horizon distance,

dhor(t0) = 3.20c/Hy = 3.35¢ty = 14000 Mpc. (5.115)

If the Benchmark Model is a good description of our own universe, then we can’t

see objects more than 14 gigaparsecs s away because light from them has not yet

had time to reach us. The right panel of Figure 5.9 shows d,,(z,), the distance to a
galaxy with observed redshift z at the time the observed photons were emitted. For b5
the Benchmark Model, d,(z,) has a maximum for galaxies with redshift z = 1.6,

where d,(1,) = 0.405¢/Hyer 0 Gog R, -

When astronomers observe a distant galaxy, they ask the related, but not
identical, questions, “How far away is that galaxy?” and “How long has the > light
from that galaxy been traveling?” In the Benchmark Model, or any other model,
we can answer the question “How far away is that galaxy?” by computing the
proper distance d),(fy). We can answer the question “How long has the light from
that galaxy been travehng’?” by computing the lookback time. If hght emitted
at time #, is observed at time #,, the lookback time is simply #o — f,. In the

To 2<¢y limit of very small redshifts, t, — ¢, ~ z/H,. However, as shown in Figure
: 5.10, at larger redshifts the relation Between lookback time and redshift becomes

A= %0.:(:6 ~. nonlinear. The exact dependence of lookback time on redshift depends on the

Hs- ‘cosmological model used. For example, consider a galaxy with redshift 7 = 2.
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Figure 5.10 The lookback time, fy — t,, for galaxies with observed redshift z. The
Hubble time is assumed to be Ha‘ b= 144 Gyr. The bold solid line shows the result for
the Benchmark Model. For comparison, the dot-dash line indicates a flat, lambda-only
universe, and the dotted line a flat, matter-only universe.

In the Benchmark Model, the lookback time to tha%:g%axy is 10.5 Gyr; we are
seeing a redshifted image of that galaxy as it was 10.5 billion years ago. In a flat,
lambda-only universe, however, the lookback time t0 a z = 2 galaxy is 15.8 Gyr,
assuming H, = 144 Gyr. In a flat, matter-dominated universe, the lookback
time to a z = 2 galaxy is a mere 7.7 Gyr, with the same assumed Hubble constant.
The most distant galaxies that have been observed (at the time of writing) are
at a redshift z ~ 10. Consider such a high-redshift galaxy. Using the Benchmark
Model, we find that the current proper distance to a galaxy with z = 10is d,(fp) =
2.18¢c/Hy = 9500 Mpc, about two-thirds of the current horizon distance. The
proper distance at the time the light was emitted was d,(z,) = dy(tp)/(1 +2) = |C o
0.20c/Hy = 870 Mpc. The light we observe now was emitted when the age of the Al . va
universe was 7, = 0.033H;"' = 0.47 Gyr; this is less than 4% of the universe’s |/ e
current age, 7o = 0.955H;, ' = 13.74 Gyr. The lookback time toaz = 10 galaxyin / .
the Benchmark Model is thus zy — ¢, = 0.922H, 1 =13.27 Gyr. Astronomers are
fond of saying, “A telescope is a time machine.”!? As you look further and further
out into the universe, to objects with larger and larger values of dy (%), you are :
looking back to objects with smaller and smaller values of ¢,. When you observe é)fayf A L
a galaxy with a redshift z = 10, according to the Benchmark Model, you are
glimpsing the universe as it was as a youngster, less than half a billion years old.

12 0Or, as William Herschel phrased it over two centuries ago, “A telescope with a power of penetrating into
space...has also, as it may be called, a power of penetrating into time past.”



