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Cosmic Dynamics

The idea that the universe could be curved, or non-Euclidean, long predates
Einstein’s theory of general relativity. As early as 1829, half a century before
Einstein’s birth, Nikolai Ivanovich Lobachevski, one of the founders of non-
Euclidean geometry, proposed observational tests to demonstrate whether the
universe was curved. In principle, measuring the curvature of the universe is
simple; in practice, it is much more difficult. In principle, we could determine the
curvature by drawing a really, really big triangle, and measuring the angles «, S,
and y at the vertices. Equations 3.22, 3.25, and 3.27 generalize to the equation

4

4\ PociTive CORATIHEL

a+ﬂ+y=n+;—13, K= o TrA 4.1)
0 ~\ sELQATVE

where A is the area of the triangle. Therefore, if « + 8 + y > m radians, the
universe is positively curved, and if @ + 8 + ¥ < 7 radians, the universe is
negatively curved. If, in addition, we measure the area of the triangle, we can
determine the radius of curvature Ry. Unfortunately for this elegant geometric
plan, the area of the biggest triangle we can draw is much smaller than RZ% and
the deviation of &« + 8 + y from & radians would be too small to measure.

We can conclude from geometric arguments that if the universe is curved, it
can’t have a radius of curvature Ry that is significantly smaller than the current
Hubble distance, ¢/Hy =~ 4380 Mpc. To see why, consider a galaxy of diameter D
that is at a distance r from the Earth. In a flat universe, in the limit D < r, we can
use the small angle formula to compute the observed angular size « of the galaxy:

\ 0 D ‘
— ¥ Oza- N DSl 4.2)
In a positively curved universe, the angular size is
, : \ D
- 7/) < fz}\/ S = — 4.3
S15(/{"’1 ,\‘f 0 )= %+ = Rosin(r/Ro) (4.3)
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When r < 7Ry, then y > D/r, and the galaxy appears larger in size than it
would in a flat universe. That is, in a positively curved universe, the curvature
acts as a magnifying lens. Notice that the angular size oy blows up at r = wRy;
physically, this means that when a galaxy is at a distance corresponding to half
the circumference of the universe, it fills the entire sky. No such bloated, highly-
magnified galaxies are seen, even though we can see galaxies at distances as great
as r ~ c¢/Hy. Thus, we conclude that if the universe is positively curved, it must
have TRy > ¢/Ho=<\,
Ina hegatively curved universe, the observed angular size of the galaxy is
D D

%= Rosinh(r/Rg) ~ 1 ° (=)

At a distance r > Ry, we can use the approximation sinh x ~ ¢*/2 to find
P b

2D r @.5)
_ — X . .
TR TP\ TR,

In a negatively curved universe, galaxies at a distance much greater than the radius
of curvature R, appear exponentially tiny in angle. However, in our universe,
galaxies are seen to be resolved in angle out to distances r ~ ¢/Hy. Thus, we
conclude that if the universe is negatively curved, it must have Ry > ¢/Hy= RH

4.1 Einstein’s Field Equation

In the 19th century, mathematicians such as Lobachevski were able to conceive
of curved space. However, it wasn’t until Einstein published his theory of general
relativity in 1915 that anyone related the curvature of space (and time) to the phys-
ical content of the universe. The key equation of general relativity, which gives
the mathematical relation between spacetime curvature and the energy density
and pressure of the universe, is the field equation.

Einstein’s field equation plays a role in génefal relativity that is analogous to
the role played by Poisson’s equation in Newtonian dynamics. Poisson’s equation,

E’ﬂl 5’/ | V2 = 47 G, -r (4.6)

tells you how to compute the gravitational potential ®, given the mass density p
of the material filling the universe. By taking the gradient of ®, you determine
the acceleration, and can then compute the trajectory of objects moving freely
through space under the influence of gravity. Analogously, you can use Einstein’s
field equation to compute the curvature of spacetime, given the energy density
g, pressure P, and other properties of the material filling the universe. You can
then compute the trajectory of a freely moving object by finding the appropriate
geodesic in the curved spacetime.
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Einstein’s field equation looks simple when it is written down:

826G

G v = —0
# 4

Tyy. 4.7)

The simplicity is deceptive, since the compact notation hides a great deal of
necessary detail. The qucmtity Gy on the left-hand side of Equation 4.7 is the
Einstein tensor, which is a 4 x 4 tensor that describes the curvature of spacetime
at every location (¢,x,y, 7). It is a symmetric tensor, with Gm, = Gy, so it has
ten independent components. On the right-hand side of Equation 4.7, the quantity
T,, is the stress-energy tensor, sometimes called the energy-momentum tensor;
like the Einstein tensor, it is a 4 x 4 symmetric tensor.

The deceptively simple field equation, G,, = (87 G/c"Ty,, is actually a
set of ten nonlinear second-order differential equations. Even without making
the herculean effort to solve them exactly to find the curvature everywhere (and
everywhen) in spacetime, we can make general statements about the properties
of the solution. Since the ten differential equations are second order, this means
that spacetime can have nonzero curvature even in spacetime neighborhoods
where the stress-energy tensor T),, is zero. (Analogously, Poisson’s equation is a
second-order differential equation, and gravitational acceleration can be nonzero
even in spatial neighborhoods where the mass density is zero.) Another property
of second-order differential equations involving space and time is that they can
yield propagating wave solutions, in which disturbances propagate through space

as a function of time. Just as a time-varying electric_dipole creates electro-

magnetlc waves, a time- Varylng mass energy quadrupole creates grav1tat10na1
waves.! T

In the most general case, the stress-energy tensor 7),, can be very compli-
cated, and difficult to calculate. However, things become much simpler if the
universe is filled with a homogeneous and isotropic perfect gas. In that case, an
observer who sees the universe expanding uniformly around her will measure
an energy density (f) and a pressure P(f) for the ideal gas that are a function
only of cosmic fime; the observer will not measure any bulk velocity z for the
gas, since that would break the isotropy. In this idealized case (which fortu-
nately is a good approximation for our purposes), the stress-energy tensor 7,
depends only on e(#) and P(¢). The metric describing the curvature of space-
time, in this case, is the homogeneous and isotropic Robertson—Walker metric
(Equation 3.41):

ds* = —c*di* 4 a()* [dr’ + S (r)*dQ?], (4.8)

1 Einstein predicted the existence of gravitational waves in 1916. He then “un-predicted” them in 1936, when
he erroneously thought they were a byproduct of the approximations he had made in 1916. In the 1950s,
however, physicists “re-predicted” the existence of gravitational waves, which were finally detected by the
Laser Interferometry Gravitational-wave Observatory on 14 Sept. 2015, just in time for the centenary of
Einstein’s prediction.
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where
. Rosin(r/Ry)  (k = +1)
g Se()=1qr (k = 0)
Rysinh(r/Ry) (k = —1).

4.9)

Our remaining goal is to find how a(f), «, and Ro, the parameters that describe
curvature, are linked to &(¢) and P(z), the parameters that describe the contents of
the universe.

4.2 The Friedmann Equation

The equation that links together a(¢), «, Ry, and £() is known as the Friedmann
equatzon after Alexander Friedmann, the Russian physicist who first derived the
equation in 1922.2 Friedmann actually started his scientific career as a meteo-
rologist. Later, however, he taught himself general relativity, and used Einstein’s
field equation to describe how a spatially homogeneous and isotropic universe
expands or contracts as a function of time. Friedmann published his first results,
implying expanding or contracting space, five years before Lemaitre interpreted
the observed galaxy redshifts in terms of an expanding universe, and seven years
before Hubble published Hubble’s law.

Friedmann derived his eponymous equation starting from Einstein’s field
equation, using the full power of general relativity. Even without bringing
relativity into play, some (though not all) of the aspects of the Friedmann
equation can be understood with the use of purely Newtonian dynamics. To
see how the expansion or contraction of the universe can be viewed from a
Newtonian viewpoint, I will ﬁrst derive the nonrelativistic equivalent of the
Friedmann equation, starting from Newton’s law of éraVIty and second law of
motion. Then I will state (without proof) the modifications that must be made to
find the more correct, general relativistic form of the Friedmann equation.

To begin, consider a homogeneous sphere of matter, with total mass M, con-
stant with time (Figure 4.1). The sphere is expanding or contracting isotropically,
so that its radlus R(1) is increasing or decreasing with time. Place a test mass,
of infinitesimal mass m, at the surface of the sphere. The gravitational force F
experienced by the test mass will be, from Newton’s law of gravity,

'\ GMgm _ o a oM

|\ F = =Mt -1 | (4.10
'l R;(1)? ;’CL' o0\ 10

{ 2 -I“ , - f

2 Using the Library of Congress transliteration system for Chyrillic, his name would be “Aleksandr Fridman.”
However, in the German scientific journals where he published his main results, he alternated between
the spellings “Friedman” and “Friedmann” for his last name. The two-n spelling is more popular among
historians of science.
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Figure 4.1 A sphere of radius R;(r) and mass M;, expanding or contracting under its own
gravity.

The gravitational acceleration at the surface of the sphere will then be, from
Newton’s second law of motion,

d*R, GM,
= = — —, 4.11
a dr? R, (1)? 1D
Multiply each side of the equation by dR,/dt and integrate to find
l-l D 1 (dR\? GM,
' iU — ( ) = + U, (4.12)

, W5
l /|

where U is a constant of integration. Equation 4.12 simply states that the sum of
the kmetlc energy pel umt mass,

| S *
LA AREY g%.tdﬁ\ehnz.;_(dRs) = Blin o ™ (5

fU/ A & RE RS de dt vin Ty
and the gravitational potential energy per unit mass,

c.pm ~GMeom

4.14
€pot = R (l‘) ‘ﬂ/\ 5\.&3 ‘1 I( )

’a
is constant for a bit of matter glt the surface of a sphere, as the sphere expands or
contracts under its own gravitational influence.

Since the mass of the sphere is constant, we may write

M, = %p(t)Rs(t)3. (4.15)

Since the expansion or contraction is isotropic about the sphere’s center, we may
write the radius R,(7) in the form e - /t? T i T Al acanslial }

R;(2) = a?/t)r{ (4.16)
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I

where a(t) is the scale factor and 7 is the ‘comoving radius of the sphere. In terms
of p(?) “and a(t) the energy conservation Equation 4.12 can be rewritten in the
form

1 4

5 ria* = . —Grlp(Ha()* + U. 4.17)
--.Dividing each side of Equation 4.17 by ;2a2 /2 yields the equation

2 0\/6\,‘/ 0
|\,\&/) _ (ﬁ) =87T_Gp(t)_|_2_[2]L

3 (4.18)

' FO)Q 5 r'leAN wigFALEquation 4.18 gives the Friedmann equatron in its Newtonian form.

'.‘f.- f"

e Xk

Note that the time derivative of the scale factor only enters into Equation 4.18
as a*; a contracting sphere (@ < 0) is simply the time reversal of an expanding
sphere (@ > 0). Let’s concentrate on the case of an expanding sphere, analo-
gous to the expanding universe in which we find ourselves. The future of the
expanding sphere falls into one of three classes, depending on the sign of U.

First, consider the case U > 0. In this case, the right-hand side of Equation

4.18 is always positive. Therefore a? is always positive, and the expansion of

the sphere never stops. Second, consider the case U < 0. In this case, the right-
hand side of Equatlon 4.18 starts out positive. However at a maximum scale
factor

CUEDT: SHow  am=—Ft ol L U2ol @)

s

the right- hand side will equal zero, and expansion will stop. Since a will still

be negative, the sphere will then contract. Third, and finally, consider the
case U = 0. This is the boundary case ‘in which @ — 0 as t — 00 and
p — 0.

" The three possible fates of an expanding sphere in a Newtonian universe are
analogous to the three possible fates of a ball thrown upward from the surface

re a(t)z. TR t1h MN ©Bua

{08

of the Earth. First, the ball can be thrown upward with a speed greater than the A7 Vpe

escape speed; in this case, the ball continues to go upward forever. Second, the
ball can be thrown upward with a speed less than the escape speed; in this case,
the ball reaches a maximum altitude, then falls back down. Third, and finally, the
ball can be thrown upward with a speed exactly equal to the escape speed; in this
case, the speed of the ball approaches zero as t — oo.

The Friedmann equation in its Newtonian form (Equation 4.18) is useful
in picturing how isotropically expanding objects behave under the influence
of their self-gravity. However, its application to the real universe must be
regarded with considerable skepticism. First of all, a spherical volume of
finite radius R; cannot represent a homogeneous, isotropic universe. In a finite
spherical volume, there exists a special location (the center of the sphere),
violating the assumption of homogeneity, and at any point there exists a special
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direction (the direction pointing toward the center), violating the assumption 5‘:{
of isotropy. What if we instead regard the sphere of radius R; as being carved ZU _ _Vc.
out of an infinite, homogeneous, isotropic universe? In that case, Newtonian z a:(t)
dynamics tell us that the gravitational acceleration inside a hollow sphencally )
symmetric shell is equal to zero. We divide up the region outside the sphere into = f;__-.; z
concentric shells, and thus conclude that the test mass m at R; experiences no net; ) [
acceleration from matter at R > R;. Unfortunately, a Newtonian argument\ '
of this sort assumes that space is perfectly Euclidean, an assumption that
we can’t necessarily make in the real universe. A derivation of the correct !f
Friedmann equation has to begin, as Friedmann himself began, with Einstein’s /
field equation.

The correct form of the Friedmann equation, 1nclud1ng all general relativistic

effects, is Ci &) / J”’{ e
N -\ 2
Z H,_/U ﬁ(a) _8G (t)_;cc2 1 ' u, "Lkﬂl (4 2§ﬂnar>hANN =)

a

- Note the changes made in going from the Newtonian form of the Friedmann

equation (Equation 4.18) to the correct relativistic form (Equation 4.20). The
first change is that the mass density p has been replaced by an energy density
¢ divided by the square of the speed of light. One of Einstein’s insights was that
in determining the grav1tatlonal mﬂuence O£ a particle the important qucmuty was

e v/, e
not its mass m but its energy, H.erj/  FMENT: oM, P yE=vact (\+Ze) Yo

_ = (m*c* +p c”)”2 > ~mc/i+] L: 4.21) L
: JELT ’H D = Y '| | (M }] 7
Here p is the momentum of the particle, as measured by an observer at the par- {1\
ticle’s location who sees the universe expanding isotropically. Any motion that a EVElG] ewnel,
particle has, in addition to the motion associated with the expansion or contraction
of the universe, is called the particle’s peculiar motion.> If a massive particle is
nonrelativistic, with a peculiar velocity v <e¢ then its peculiar momentum will

be p~my and its energy will be N CLAS

/o

1 Y
Eponret & mc*(1 +v*/c*)V? &~ mc* + Smv: 2owme +6,,,(4.22)

Thus, if the universe contained only massive, slowly moving particles, then the
energy density ¢ would be nearly equal to pc?, with only a small correction for
the kinetic energy mv?/2 of the particles. However photons and other massless
particles also have an energy,

Era =pe = .= O~ . 423) AS

3 The adjective “peculiar” comes from the Latin word peculium, meaning “private property.” The peculiar QUAW ort
motion of a particle is thus the motion that belongs to the particle alone, and not to the global expansion or 0{( ‘Ef (AQ /\
contraction of the universe. Ds
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which contributes to the energy density &. Not only do photons respond to the

NE v O,J curvature of spacetime, they also contribute to it.
~ The second change that must be made in going from the Newtonian form of
=75 '} the Frledmann cquatnon to the correct relativistic form is makmg the substitution

‘ 2[} L( ] - J\j(/ 5 o ; (rlf«t.“l’q""fri'_'
Ve-E - - ke \ A = - -_VC e | B _ K(‘ L6 [y Tk (424)

=y | R2 K=-1= Yoo M Vi

The Newtoman case with U < 0 corresponds to the relativistic case w1th posi-

, tlve curvature (¢ = +1); conversely, U > 0 corresponds to negative curvature
| (zc = —1). The Newtoman special case with U =0 corresponds to the relativistic
WhigRe K= - / specxa] case where the space is perfectly flat (¢ = 0). Although I have not given

— .~ the derivation of the Friedmann equation in the general relativistic case, it makes
is ,L | -I‘. “ .. " . T',jl_""'sense that the curvature, given by « and Ry, the expansion rate, given by a(f),
:{, If : ‘_._Ir ‘ | ~ and the energy density & should be bound up together in the same equation. After
. all, in Einstein’s view, the energy density of the universe determines both the
curvature of space and the overall dynamics of the expansion.

The Friedmann equation is a Very Important Equation in cosmology.* How-
ever, if we want to apply the Friedmann equation to the real universe, we must
have some way of tying it to observable properties. For instance, the Friedmann
equation can be tied to the Hubble constant, H,. Remember, in a universe whose
expansion (or contraction) is described by a scale factor a(t), there’s a linear
relation between recession speed v and proper distance d:

v(t) = H@®d(), (4.25)

EHVE eI

where H(t) = a/a. Thus, the Friedmann equation can be rewritten in the form

2

Y o 8rG
( () 2D j = H()? = ;780) - %. (4.26)

At the present moment,
Ho = H(zy) = (fl-> =68+ 2kms~ Mpc!. 4.27)
a =ity

(As an aside, the time-varying function H(¢) is generally known as the “Hubble
parameter,” while Hy, the value of H(¢) at the present day, is known as the “Hubble
constant.”) The Friedmann equation evaluated at the present moment is

HW ¢.2 X SHou/ (‘f?t)/ﬁh"f ?&’('/ B 8n G Kc?

= ——6— — (4.28) o
X Wﬁm{ Qf’f@(ae WA Cotiae ud "r.’-"\ L(’n ) 0 \ 3C2 R2

using the convention that a subscrfpt “0” indicates the value of a time-varying
quantity evaluated at the present us, the Friedmann equatlon g1ves a relation

*L}LJ \A/jé f*\tls‘&v,(yoftu,w () ((r ? é'nf 4 Nu ’(_:,.7 = (J - 7 H" ;r; -/\: 6

ﬂ = & A o o
4 You should conslder writing :: in reverse on your forehead 50 that you can see it gyery mmLmng in the mirror

wh b your hair. Ll
en you comb your gn = PG’ (‘)' = .('.\ o€
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between the Hubble parameter Hy, which tells us the current rate of expansion, O
&0, which tells us the current energy density, and K/Rz, Wthh tells us the current

curvature. ((4 28) vty 26=0 = W=\ =\ o=/ 40 Vo 0 CORVATORE
In a spatially flat universe (x = 0), the Friedmann equatlon takes a particu-

larly simple form:
G — ey -
H()? = %”—28@). FULAT UNIVERSE (4.29)
c

_ Thus, for a given value of the Hubble parameter, there is a critical density,
// I () oo | cen <0
¢(E)> sd)= U= <L o5& SPAE 32 , 3 HO
sl =4l *)\/“"_’* FLAT 8.(I)E——H(t) ){Jfrb = !.‘, =
k) <5.0) =) K=-\ ofeEN .
i If the energy density &(f) is greater than this value, the universe is pos1t1vely

curved (k = +1). If £(z) is less than this value, the universe is negatively curved
(k = —1). Knowing the Hubble constant to within about 3%, we can compute the
current value of the critical density to within about 6%:

(4.30)

2

3
Eeo = ﬁHg = (7.8 £ 0.5) x 107'°Tm™ = 4870 + 290MeVm ™. (4.31)

The critical density is frequently written as the equivalent mass density,

Pe0 = ‘9‘20 = (8.7+0.5) x 107 kgm™> (4.32)
C

= (1.28 £ 0.08) x 10" Mg Mpc ™.

The current critical density is roughly equivalent to a density of one proton
per 200 liters. This is definitely not a large density, by terrestrial standards;
a 200-liter drum filled with liquid water, for instance, contains ~ 10% protons
and neutrons. The critical density is not even a large density by the standards
of interstellar space within our galaxy; even the hottest, most tenuous regions
of the interstellar medium have a few protons per liter. However, keep in mind
that most of the volume of the universe consists of intergalactic voids, where the
density is extraordinarily low. When averaged over scales of 100 Mpc or more,
the mean energy density of the universe, as it turns out, is very close to the critical
density.

When discussing the curvature of the universe, it is useful to talk about the
energy density in terms of the dimensionless density parameter

an =29 _ s )l'i(t) (4.33)

g(t) 2“HL
The current value of the density parameter, determined from a combination of
observational data, lies in the range 0.995 < Q4 < 1.005. Written in terms of the
density parameter 2, the Friedmann equation becomes

(L.20)/H(E) /. B _ kc?
// / '-'I".- = 1 Q1) R%(Z(I)zH(I)?‘ . (434)
(( 1.52 D,

"/‘
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Note that, since the right-hand side of Equation 4.34 cannot change sign as the
universe expands, neither can the left-hand side. If Q < 1 at any time, it remains O
less than one for all time; similarly, if Q > 1 at any time, it remains greater
than one for all time, and if Q@ = 1 at any time, € = 1 at all times. At the &
present moment, the relation between curvature, density, and expansion rate can
be written in the form

Hu ty: xhs (3520 =X o 435)
—— 1 A==, = _ | 35 \
'&_‘}kc\)s; 1T CRyTICAL INPLICATIoNS) RyHp ONCE (2 E\ = ACAYS (L= (>\<=?O )
. oneE LN = Abdays <) (K-

([/4 NI e 1 Foas t'an‘l/} ) Hg
R CT(QO —1). 45e
0

SOI\JCI‘, Q> = At 2\ e+ 9

If you know Q, you know the sign of the curvature (). If, in addition, you know
the Hubble distance, ¢/Hy, you can compute the radius of curvature (Ro). .
Uac i.\.;_?.il: +( ¢ - lf.." £ [; LEI ...(67. U.J'. L3 frl\v- Ao 0‘{ ( H (-"__-f; ‘ﬂ'b‘%{ /:' ’

S5 MINT : \ ] ~ . Tt /1 o1k
.- _6; (ONC /‘Iddﬁ)f : | (\ e m)/! = 6"' f{) (\ - (2, L i" \({:J{L:{J +2 I.:l "_:\;_j) I'I‘
oo Lo A3 The Fluid and Acceleration Equations |~ 2/ %0 |
MAY Pelwe THES FoK o :
= Y RA CfE (T, SUY Veed ™ piZ(ust ns GEERT IMPOKTANCE Iy ANY CASE
Although the Friedmann equation is indeed important, it cannot, all by itself, tell
us how the scale factor a(¢) evolves with time. Even if we had accurate boundary
conditions (precise values for &y and Hy, for instance), it still remains a single
equation in two unknowns, a(z) and &(f).
We need another equation involving @ and ¢ if we are to solve for g and
¢ as functions of time. The Friedmann equation, in the Newtonian approxima-
tion, is a statement of energy conservation; in particular, it says that the sum
of the gravitational potential energy and the kinetic energy of expansion is con-
stant. Energy conservation is a generally useful concept in Newtonian physics,
so let’s look at another manifestation of the same concept — the first law of

thermodynamics:
1goixopj+ F{ 0 W i\(1f i ‘.—LI . éTD

@ No Eulik -(i,t-'a,f _g-?(:?w (ﬁ:>g{&;h
A ADARAT where dQ is the heat flow into or out of a volume, dE is the change il}_iIiC_I‘_Ilé_ll
= energy, P is the pressure, and dV is the change in volume. This equation was
> ENTROPY appliedmon 25toa corﬁoving volume filled with photons, but it applies
equally well to a comoving volume filled with any sort of fluid. If the universe
is perfectly homogeneous, then for any volume dQ = 0; that is, there is no bulk ki
flow of heat. ) |

Processes for which dQ = 0 are known as adiabatic processes. The term
“adiabatic™ comes from the Greek word adiabatos, meaning “not to be passed
through.” referring to the fact that heat does not pass through the boundary of the

e a1 pem—
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dQ = dE + PdV, 4.37)
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volume.> Saying that the expansion of the universe is adiabatic is also a statement 5§
about entropy. The change in entropy dS within a region is given by the relation
dS = dQ/T; thus, an adiabatic process is one in which entropy is not increased. A
homogeneous, isotropic expansion of the universe does not increase the universe’s
entropy. T

"~ Since dQ = 0 for a comoving volume as the universe expands, the first
law of thermodynamics, as applied to the expanding universe, reduces to the
form

) A€ - dE ?ﬂ’ T ST
[f )= DTG = E+pPv=0. (4.38)
For concreteness, consider a sphere of comoving radius r, expanding along with
the universal expansion, so that its proper radius is R;(¢) = a(t)r;. The volume of
the sphere is _
4 P
V() = ?nrg’a(t@ (4.39)
so the rate of change of the sphere’s volume is _
4 2\ | ‘
V=""r@Gaa) =V (39> =2V HE = vV ) (4.40)
3 a ) f\\ -
The internal energy of the sphere is Vo 7, it
E(t) = V(0)e(r), s (4.41)
so the rate of change of the sphere’s internal energy is
E:Vé+Vs=v(é+3fs). (4.42)
a
Combining Equations 4.38, 4.40, and 4.42, we find that the first law of thermo-
dynamics in an expanding (or contracting) universe takes the form
N i Cwnes “
V(é—|—3—e—|—3—P>:0, /)r{-\,-,c-':._ (443) |
¢ a P2 q Yeersue toawn
or ) \ A — :
TFlLoip E::’_)')!\H"-H ‘ é+32(8—|-P)=0.:;>'{_{?‘:: - ((t / (4.44) = = \
("G(g Cotrl ‘Wf i E U\: JHTTLon QG ¥ "/

This equatlon is called’ lhe fluid equation, and is thelsecond of the key equa-
tions describing the expansion of the universe.® Unlike the Friedmann equation,
whose relativistic form is different from its Newtonian form, the fluid equation is
unchanged by the switch from Newtonian physics to general relativity.

3 The word “adiabatic” is thus etymologically related to “diabetes,” a word that refers to the quick passage of
liquids through the human body, creating the increased thirst and frequent urination that are symptomatic of
unu eated diabetes. If you do not have diabetes, you could, I suppose, refer to yourself as “a-diabetic.”

6 Write it on your forehead just underneath the Friedmann equation.
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The Friedmann equation and fluid equation can be combined into an acceler-
ation equation that tells how the universe speeds up or slows down with time. The
Friedmann equation (Equation 4.20), multiplied by a2, takes the form

26 :
2
_p_L L iﬂTf 5(k) - _\ff;_f == = &= %”c—fsaz - %. (4.45)
- Taking the time derivative yields ColNSTANT )
204 = ?3_’;9@2 + 2¢ad). (4.46)
Dividing by 2aa tells us
g _ 43”5 (55 +25). (447)

Using the fluid equation (Equation 4.44), we may make the substitution
—=-3(+P) (4.48)

to find the usual form of the acceleration equation,_
Acce N ErAiion EQUATION 2=_ ”G(e+3P) wialiony ot My 45,
e a 'ﬂ_‘ ‘ AR Vi 0w Cua n
If the energy density ¢ is positive, then it provides a negative acceleration — that
is, it decreases the value of ¢ and reduces the relative velocity of any two pomt%
in the universe. The acceleration equation also includes the pressure P associated
with the material filling the universe.’

A gas made of ordinary baryonic matter has a positive pressure P, resulting
from the random thermal motions of the molecules, atoms, or ions of which the
gas is made. A gas of photons also has a positive pressure, as does a gas of
neutrinos or WIMPs. The positive pressure associated with these components of
the universe will cause the expansion to slow down. Suppose, though, that the
universe had a component with ¢ > 0 and

| 1| =2

P < —3% (4.50)
Inspection of the acceleration equation (Equation\4.49) shows us that such a com-
ponent will cause the expansion of the universe to speed up rather than slow down.

LFW /\40\\«.\,4'\6( et P:j') .

4.4 Equations of State

To recap, we now have three key equations that describe how the universe
expands. There’s the Friedmann equation,

O 0 i Although we think of s‘ as an ene;gy per unit vnll.:me and P as a force per unit area, they both have the same
JP—— dimensionalityv: 1 IJm™ S INm2 = lkem™
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the fluid equation,
TLuip \%Q DA Vord (L“L'Ld: o 39(8 +P) =0, (4.52)
CopTinoiy e8. a
and the acceleration equation,
ACCELKLQ*“@\)N Eﬁfll 114) = -4§I—ZGQ9+3P). (4.53)
c

Of these three equations, only two are independent, because Equation 4.53, as
we’ve just seen, can be derived from Equations 4.51 and 4.52. Thus, we have a
system of two mdependent equations in three unknowns — the functlons a(t), (1),
and P(t) To solve for the scale factor, energy density, and pressure as a function
‘of cosmic time, we need another equation. What we need is an equation of state;
that is, a mathematical relation between the pressure and energy density of the

stuff that fills up the universe. If only we had a relation of the form
.

\ P = pee), (4.54)
}

§
i
i
=3

life would be complete — or at least, our set of equations would be complete. We
could then, given the appropriate boundary conditions, solve them to find how
the universe expanded in the past, and how it will expand (or contract) in the
future.

In general, equations of state can be dauntingly complicated. Condensed mat-
ter physicists frequently deal with substances in which the pressure is a com-
plicated nonlinear function of the density. Fortunately, cosmology usually deals
with dilute gases, for which the equation of state is simple. For substances of
cosmological importance, the equation of state can be written in a simple linear

form: _
| P=ws,[:;-{dl£:-/- = = T (455)=wr
(& GC I

where w is a dimensionless number

Consider, for instance, a low-density gas of nonrelativistic massive parﬁcles
Nonrelativistic, in this case, means that the random thermal motions of/ the gas
particles have peculiar velocities which are tiny compared to the speed of light.
Such a nonrelativistic gas obeys the perfect gas law,

YWEAL GAS - . [V

0

(JV—NkT»-»:, V- (/v kT =—— P=—kT= Kl %= ¥ =w.g (4.56)

0=

\/ v < v

V/a M \/{A(.’

- where p is the&ean mass of the gas particles. The energy density ¢ of a nomela—

tivistic gas is Althost entirely contributed by the mass of the gas particles: £ & pc?.
Thus, in termswf ¢, the perfect gas law is

r'!,{,ﬂ/ o

3
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(/\/)cuj@.su); V=i = Pr /%TE’“ WS Ev= /\:—'c; (4.57)

For a nonrelativistic gas, the temperature 7' and the root mean 1 square thermal
velocity (v?) are associated by the relation

/3 3 NS
Y 4S Discuss 3T = (). = ZUT = Z Ml 2(4.58)

W 70
%M i, © {’ Thus, the equation of state for a nonrelativistic gas can be written in the form

w(u

Pronrel = Wéponrel= V \
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% Wit SACCELERATING L =7 AT CoStanc £ <v2> W 274
. =N>0 > ally 3¢
%V -

Most of the gases we encounter in everyday life are nonrelativistic. For instance,
in air at room temperature, nitrogen molecules are slow-poking along with a root
mean square velocity of ~ 500ms™!, yielding w ~ 10~'2. Even in astronomical
contexts, gases are mamly nonrelativistic at the | present moment. Within a gas
of ionized hydrogen, for instance, the electrons are nonrelativistic_as long as
T < 6 x 10° K; the protons are nonrelativistic when T < 1013 K.

~ A gas of photons; or other massless particles, is guaranteed to be relativistic.
Although photons have no mass, they have momentum, and hence exert pressure.
The equation of state of photons, or of any other relativistic gas, is

Py 1
(_{ .{)_} ..'1 ? » Prel f— -3—81'61' (4.61)
- j_ C
(This relation has already been used in Section 2.5, to compute how the cosmic
microwave background cools as the universe expands.) A gas of highly relativistic

massive particles (with (v2) ~ ¢?) will also have w = 1/3; a gas of mildly

relativistic particles (with 0 < (*) < ¢?) will have 0 < w < 1/3.

LSome values of w are of particular interest. FOf instance, the case w = 0 is
of interest, because we know that our universe contains nonrelativistic matter.
The case w = 1/3 is of interest, because we know that our universe contains
photons. For simplicity, we will refer to the component of the universe that
consists of nonrelativistic particles (and hence has w ~ 0) as “matter,” and the
component that consists of photons and other relativistic particles (and hence
has w = 1/3) as “radiation.” The case w < —1/3 is of interest, because

a component with w < —1/3 provides a positive acceleration (@ > 0 in
Equation 4.53). A co component of the universe with w < —1/3 is referred
to generically as “dark energy” (a phrase coined by the cosmologist Michael
Turner). One form of dark energy is of special interest; observational evidence,

& o
. MY /2 (4.59).
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which we’ll review in future chapters, indicates that our universe may contain a
cosmological constant. A cosmological constant may be defined simply as
a component of the universe that has w = —1, and hence has P = —s¢.

The cosmological constant, also designated by the Greek letter A, has had a

controversial history. To learn why cosmologists have had such a long-standing
love/hate affair with the cosmological constant A, it is necessary to make a brief
historical review.

4.5 Learning to Love Lambda

The cosmological constant A was first introduced by Albert Einstein. After pub-
lishing his first paper on general relativity in 1915, Einstein, naturally enough,
wanted to apply his field equation to the real universe. He looked around, and
noted that the universe contains both radiation and matter. Since Einstein, along
with every other earthling of his time, was unaware of the existence of the cosmic
microwave background, he thought that most of the radiation in the universe was
in the form of starlight. He also noted, quite correctly, that the energy density
of starlight in our galaxy is much less than the rest energy density of the stars.
Thus, Einstein concluded that the primary contribution to the energy density of
the universe was from nonrelativistic matter, and that he could safely make the
approximation that we live in a pressureless universe.

So far, Einstein was on the right track. However, in 1915, astronomers were
unaware of the existence of the expansion of the universe. In fact, it was by no
means settled that galaxies besides our own actually existed. After all, the sky is
full of faint fuzzy patches of light. It took some time to sort out that some of the
faint fuzzy patches are glowing clouds of gas within our galaxy and that some
of them are galaxies in their own right, far beyond our own galaxy. Thus, when
Einstein asked, “Is the universe expanding or contracting?” he looked, not at the
motions of galaxies, but at the motions of stars within our galaxy. Einstein noted
that some stars are moving toward us and that others are moving away from us,
with no evidence that the galaxy is expanding or contracting.

The incomplete evidence available to Einstein led him to the belief that the
universe is static — neither expanding nor contracting — and that it has a positive
energy density but negligible pressure. Einstein then had to ask the question,
“Can a universe filled with nonrelativistic matter, and nothing else, be static?”
The answer to this question is “No!” A universe containing nothing but matter
must, in general, be either expanding or contracting. The reason why this is true
can be illustrated in a Newtonian context. If the mass density of the universe is p,
then the gravitational potential ® is given by Poisson’s equation:

Vi = 4nGp. (4.62)

V.
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The gravitational acceleration & at any point in space is then found by taking the
gradient of the potential:

 (Peove (Gb2) [4.62) 4.6y — U (4.63)

/\—_ feu/(f i scem . .
Ina permanenﬂy static universe, ¢ must vanish everywhere, 1mplying the potential

® must be constant in space. However, if ® is constant, then (from Equation 4.62)

1
p = mvzd) =0. (4.64)

The only perm1351ble static universe, in this analysis, is a totally empty universe.
If you create a matter-filled universe that is initially static, ‘then gravity will cause
it to contract. If you create a matter-filled universe that is initially expanding, then
it will either expand forever (if the Newtonian energy U is greater than or equal
to zero) or reach a maximum radius and then collapse (if U < 0). Trying to make
a matter-filled universe that doesn’t expand or collapse is like throwing a ball into
the air and expecting it to hover there.

How did Einstein surmount this problem? How did he reconcile the fact that
the universe contains matter with his desire for a static universe? Basically, he
added a fudge factor to the equations. In Newtonian terms, what he did was
analogous to rewriting Poisson’s equation in the form

V2O + A = 4nGp. (4.65)

The new term, symbolized by the Greek letter A, came to be known as the
cosmologzcal constant. Introducing A into P01sson S equatlon allows the universe
“fo be static 1fy0u set A =4nGp. =2, \/° (;D I AND oI

In general relativistic terms, what Einstein d1d was to add an add1t10nal term, |

involving A, to his field equation. If the Friedmann equation is re-derived from
Einstein’s field equation, with the A term added, it becqmes

L Y (s Aﬁff

U

2\ 2 2/ /N
. a 81 G Kc / A \al )6
S ' <a) 32 ° R3a? +._ 3/ i (4.66)

The fluid equation is unaffected by the presence of a A term, so it still has the

form
). Gty =

equation (4.41)=) é+3f(e+P) = 0. (4.67)

W th the A term pxesenl the acceleration equation becomes
&L AcButaAtion 4 N
g,‘f (.t \ = - = (8+3P)+§ l (4.68)

- /< & a
A look at the Friedmann equation (Equatlon 4.66) tells us that adding the A term
is equivalent to adding a new component to the universe with energy density

C2

Ep=—A. =

= A fWLzA (4.69)
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If A remains constant with time, then so does its associated energy dens1ty EA-
The fluid equatlon (Equation 4.67) tells us that to have e, constant with tlme the

A term must have an associated pressure = = 5; A SO
(63w S W= Taey
~ W = Pp=—¢ =——Aé"* N= - 4.70
2=t > 5207 A = T 2
Thus, we can think of rﬁb coqmologlcal constant as a component of the universe, fj
which has a constant density ¢, and a constant pressure Py = —€,. ’;\;;(ci Cu\;li ; A

By introducing a A term into his equatlons Einstein got the static model O
universe he wanted. For the universe to remain static, both a and a must be equal
to zero. If @ = 0, then in a universe with matter density p and cosmological
constant A, the acceleration equation (Equation 4.68) reduces to

GEE i a=0] 4rG A .
€z ) O=-=—r+3 (- ¥ ")

Thus, Einstein had to sef]A = 4x Gp in order to produce a static universe, just
as in the Newtonian case. If @ = 0, the Friedmann equatlon’(ﬁg[uatlon 4.66)

4.71)

reduces to W n < K¢
, GiGe L., .~ K, - —
STATIC A=O / 8nG k2 A Kc? c2 Fo W 4TGe
50 = — p——2+— =4nGp — '—i"'—’:) 4.72) ¥ =y
=) A = Corvel ( v | 3 R 3 RO {,/ C I‘ K
Einstein’s static model therefore had to be positively curved (x = +1), with a /és':.--'-r‘f’l N
radius of curvature Neold — oo =41 o= \;_
— e ' C

C C \.!l'/ C I. mrey |
~ Ry = = ——. = —=— 2121{Ho/(4.73)
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Although Einstein published the details of his static, positively curved, matter- )
filled model in 1917, he was dissatisfied with the model. He believed that the cos-
mological constant was “gravely detrimental to the formal beauty of the theory.”
In addition to its aesthetic shortcomings, the model had a practical defect; it was
unstable. Although Einstein’s static model was in equilibrium, with the repulsive
force of A balancing the attractive force of p, it was an unstable ethbnum '
Consider expanding Einstein’s universe just a tiny bit. The energy density of A
remains unchanged, but the energy density of matter drops. Thus, the repulsive
force is greater than the attractive force, and the universe expands further. This
causes the matter density to drop further, which causes the expansion to accel-
erate, which causes the matter density to drop further, and so forth. Expanding
Einstein’s static universe triggers runaway expansion; similarly, compressing it
causes a runaway collapse. o

Einstein was willing, even eager, to dispose of the “ugly” cosmological
constant in his equations. Hubble’s 1929 paper on the redshift—distance relation
gave Einstein the necessary excuse for tossing A onto the rubbish heap.8

8 According to the physicist George Gamow, writing his memoirs much later, Einstein “remarked that the
introduction of the cosmological term [A] was the biggest blunder of his life.”
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Ironically, however, the same paper that caused Einstein to abandon the cos-
mological constant caused other scientists to embrace it. In his initial analysis,
Hubble underestimated the distance to galaxies, and hence overestimated the
Hubble constant. Hubble’s initial value of H, = 500kms-! Mpc~! leads to
a Hubble time Hg‘i = 2Gyr. However, by the year 1929, the teéhnique of
radiometric dating, as pioneered by the geologist Arthur Holmes, was indicating
that the Earth was ~ 3 Gyr old. How could cosmologists reconcile a short
Hubble time with an old Earth? Some cosmologists pointed out that one way
to increase the age of the universe for a given value of H, ! was to introduce a
cosmological constant. If the value of A»Liis\_‘largeﬂ enough to make a > 0, then
a was smaller in the past than it is nowjzlnd consequently the universe is older
i H{,‘l. - r— :

If A has a value greater than 47 Gy, then the expansion of the universe is
accelerating, and the universe can be arbitrarily old for a given value of H,
Since 1917, the cosmological constant has gone in and out of fashion, like side-
burns or short skirts. It has been particularly fashionable during periods when the
favored value of the Hubble time H; ' has been embarrassingly short compared to
the estimated ages of astronomical objects. Currently, the cosmological constant
is popular, thanks to observations (discussed in Section 6.5) indicating that the
expansion of the universe has a positive acceleration.

A question that has been asked since the time of Einstein — and one which
we’ve assiduously dodged until this moment — is “What is the physical cause
of the cosmological constant?” In order to give A a physical meaning, we need
to identify some component of the universe whose energy density £, remains
constant as the universe expands or contracts. Currently, a leading candidate for
this component is the 'vacuum energy.

In classical physics, the idea of a vacuum having energy is nonsense. A
vacuum, from the classical viewpoint, contains nothing; and as King Lear would
say, “Nothing can come of nothing.” In quantum physics, howevEr_, ‘a vacuum
is not a sterile void. The Heisenberg uncertainty principle permits particle—
éntiparticle pairs to spontaneouﬁy appear and then annihilate in an otherwise

empty vacuum. The total energy AE and the lifetime A7 of these pairs of virtual N
particles must satisfy the relation® (2 ) AlSe wrivEn/ AS : T ‘g
OE M =Fivnt & e 0 P . :
) A . & A ,('(_’:.\ () /K 3
E e o gon By WS> | AEAT _@__( = BxAp 7 (4.74)
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Just as there’s an enerey densit associated with the real particl s in the universe
gy y !

. . . ) ; ; .. Arlowy §
there is an energy density e, associated with the virtual particle-antiparticle .
pairs. The vacuum density &, is a quantum phenomenon that doesn’t give a hoot d

9 The usual analogy that’s made is to an embezzling bank teller who takes money from the till but who always
replaces it before the auditor comes around. Naturally, the more money a teller is entrusted with, the more
frequently the auditor makes random checks.



about the expansion of the universe and is independent of time as the univetse
expands or contracts.

Unfortunately, computing the numerical value of ¢, is an exercise in quan-
tum field theory that has not yet been successfully completed. It has been sug-
gested that the natural value for the vacuum energy density is the Planck energy

density, ‘ Arc ;‘/.-_-'.L 9 ( Hiw/
. Ep r'fp(;w?) [fZ." ¢« C ¢ 475
vac ~ =112 2 (4
£ £ | c/ A

As we’ve seen in Chapter 1, the Planck energy is large by particle physics stan-
dards (Ep = 1.22 x 108 eV = 540 kilowatt—hours) while the Planck length
is small by anybody’s standards (£ = 1.62 x 10~ m). This gives an energy

densityﬁéip — %, = a,)li: A = e aii® ,/(/\,VZ}) - 0.63 aud

fvae ~ 3 X 10132 ey m3 Iz D 4 (4.76)

e

This is 123 orders of magnitude larger than the current critical dens1ty for our uni-
verse, and represents a spectdculculy bad match between theory and observations.

Obviously, we don’t 't know much yet about the energy density of the vacuum!
This is a situation where astronomers can help particle physicists, by deducing
the value of ¢, from observations of the expansion of the universe. By looking at
the universe at extremely large scales, we are indirectly examining the structure
of the vacuum on extremely small scales.

Exercises

4.1 Suppose the energy density of the cosmological constant is equal to the
present critical density 4 = £.9 = 4870 MeV m ™. What is the total energy
of the cosmological constant within a sphere 1 AU in radius? What is the rest
energy of the Sun (E;, = Myc?)? Comparing these two numbers, do you
expect the cosmological constant to have a significant effect on the motion
of planets within the solar system?

4.2 Consider Einstein’s static universe, in which the attractive force of the mat-
ter density p is exactly balanced by the repulsive force of the cosmological
constant, A = 4w Gp. Suppose that some of the matter is converted into
radiation (by stars, for instance). Will the universe start to expand or con-
tract? Explain your answer.

43 If p = 2.7 x 107%" kgm~3, what is the radius of curvature Ry of Einstein’s
static universe? How long would it take a photon to circumnavigate such a
universe?

4.4 Suppose that the universe were full of regulation baseballs, each of mass
mp, = 0.145 kg and radius r,, = 0.0369 m. If the baseballs were distributed
uniformly throughout the universe, what number density of baseballs would

j,{ yAY w eV



